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11
Betatrons

The betatron [D.W. Kerst, Phys. Rev.58, 841 (1940)] is a circular induction accelerator used
for electron acceleration. The word betatron derives from the fact that high-energy electrons are
often called�-particles. Like the linear induction accelerator, the betatron is the circuit
equivalent of a step-up transformer. The main difference from the linear induction accelerator is
that magnetic bending and focusing fields are added to confine electrons to circular orbits around
the isolation core. The beam acts as a multi-turn secondary. A single-pulsed power modulator
operating at a few kilovolts drives the input; the output beam energy may exceed 100 MeV. The
maximum electron kinetic energy achieved by betatrons is about 300 MeV. The energy limit is
determined in part by the practical size of pulsed magnets and in part by synchrotron radiation.

General principles of the betatron are introduced in Section 11.1. The similarities between the
power circuits of the linear induction accelerator, the recirculating induction linear accelerator,
and the betatron are emphasized. An expression is derived for the maximum energy from a
betatron; neglecting radiation, the limit depends only on the properties of the ferromagnetic core.

Two areas of accelerator physics must be studied in detail in order to understand the betatron;
the theory of particle orbits in a gradient-type magnetic field and properties of magnetic circuits.
Regarding orbits, the simple theory of betatron oscillations introduced in Section 7.3 must be
extended. The amplitude of transverse-orbit oscillations and conditions for constant main-orbit
radius must be determined for highly relativistic particles in a slowly changing magnetic field.
Section 11.2 treats main orbit equilibria. The main orbit in the betatron has a constant radius
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during the acceleration cycle. The orbit exists when the well-knownbetatron conditionis
satisfied. The confinement properties of the system for nonideal orbits are subsequently
discussed.
The derivations demonstrate two properties of orbits: (1) particles injected on a circular orbit
inside or outside the main orbit approach the main orbit during acceleration and (2) the
amplitude of transverse oscillations decreases during the acceleration cycle. Section 11.3
addresses the first effect, motion of the instantaneous circle. Section 11.5 discusses damping of
relativistic betatron
oscillations during acceleration. As an introduction, Section 11.4 reviews the properties of
periodic particle motions under the influence of slowly changing forces. The laws governing
reversible compressions, both for nonrelativistic and relativistic particles, are discussed. The
results are applicable to a wide variety of accelerators and particle confinement devices. Section
11.6 covers injection and extraction of electrons from the machine.

Section 11.7 surveys betatron magnet circuits, proceeding from simple low-energy devices to
high-energy accelerators with optimal use of the core. The betatron magnet provides fields for
particle acceleration, beam bending, and particle confinement. The magnet must be carefully
designed in order to fulfill these functions simultaneously. Ferromagnetic materials are an
integral
part of all betatrons except the smallest laboratory devices. Thus, the available flux change is
limited by the saturation properties of iron. Within these limits, the magnet circuit is designed to
achieve the highest beam kinetic energy for a given stored modulator energy.

Even with good magnet design, existing betatrons are inefficient. Conventional betatrons rely
on gradients of the bending field for focusing and utilize low-energy electron injection. The
self-electric field of the beam limits the amount of charge that can be contained during the
low-energy phase of the acceleration cycle. Usually, the beam current is much smaller than the
driving circuit leakage current. Consequently, energy losses from hysteresis and eddy currents in
the core are much larger than the net beam energy. Efficiency is increased by high beam current.
Some strategies for high-current transport are discussed in Section 11.6. The two most promising
options are (1) addition of supplemental focusing that is effective at low energy and (2)
high-energy electron injection using a linear induction accelerator as a preaccelerator. In
principle, betatrons can produce beam powers comparable to linear induction accelerators with a
considerable reduction in isolation core mass.

11.1 PRINCIPLES OF THE BETATRON

Figure 11.1 illustrates the basic betatron geometry. A toroidal vacuum chamber encircles the
core of a large magnet. The magnetic field is produced by pulsed coils; the magnetic flux inside
the radius of the vacuum chamber changes with time. Increasing flux generates an azimuthal
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electric field which accelerates electrons in the chamber.

In the absence of an air gap, there is little magnetic flux outside the core. An air gap is
included to divert some of the magnetic flux into the vacuum chamber. By the proper choice of
gap width, the vertical magnetic field can be adjusted to confine electrons to a circular orbit in
the vacuum chamber. As shown in Figure 11.1, the confining field lines are curved. The
resultant field has a positive field index. As we found in Section 7.3, the field can focus in both
the horizontal and vertical directions.

In summary, the simple betatron of Figure 11.1 has the following elements:

1. A pulsed magnet circuit to accelerate electrons by inductive fields.

2. An air gap to force magnetic field into the beam transport region; electrons follow circular
orbits in the bending field.

3. Shaped magnetic fields for beam focusing.

At first glance, the betatron appears quite different from the linear induction accelerator.
Nonetheless, we can show that the power circuits of the two devices are similar. To begin,
consider the induction accelerator illustrated in Figure 11.2a. The geometry is often called a
recirculating induction linac. The transport tube is bent so that the beam passes through the
same cavity a number of times. This allows higher beam kinetic energy for a given volt-second
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Eb � VotpNc/2�R (eV). (11.1)

Eb � 2BsNAcc/2�R. (11.2)

Eb � 2BsRc/2. (11.3)

product of the isolation cores. The transport. tubes are made of metal; each cavity has separate
vacuum insulators and high-voltage feeds. There are supplemental magnetic or electric forces to
bend the orbits and keep particles confined in the tube.

To begin, we calculate the maximum electron kinetic energy possible in a recirculating
induction linac with the following assumptions:

1. The beam tube has circumference 2�R.
2. There areN cavities around the circumference; each cavity has an isolation core with
cross-sectional areaAc.
3.The accelerating waveform in a cavity is a square pulse with voltageV0 and the pulselengthtp.
4.Over most of the acceleration cycle, electrons travel near the velocity of light.

During the acceleration cycle, the electrons make revolutions and travel throughctp/2�R
cavities. The final kinetic energy is thereforeNctp/2�R

Equation (11.1) can be rewritten by expressing the volt-second product in terms of the core
properties [Eq. (10.1)]:

For a given circumference, the highest energy is attained with the tightest packing of isolation
cores around the beam tube. The packing limit is reached when the cores fill the area inside the
beam, . Making this substitution, we find thatNAc � �R2

An optimized recirculating induction accelerator with pie-shaped cores is shown in Figure 11.2b.
In the figure, much of the structure has been removed and the vacuum insulators have been
extended to produce a single nonconducting toroidal vacuum chamber. The final step is to
recognize that the radial currents of the individual power feeds cancel out; we can replace the
multiple voltage feeds with a single line that encircles the core. Power is supplied from a
single-pulse modulator. The resulting geometry, the power circuit of the betatron, is shown in
Figure 11.2c.

In summary, the main differences between the betatron and the linear induction accelerator are
as follows:

1. The betatron has one pulse modulator; the induction accelerator has many.



Betatrons

331

dE�

b � (eV0/2�R) 2E �

b/mi �t. (11.4)

dE�

b/E �

b

½
� (V0/2�R) 2e2/mi �t. (11.5)

2. The beam in an induction accelerator makes a single pass through the machine. The
equivalent circuit is a transformer with a single-turn secondary and multiple parallel primary
windings. In the betatron, the beam makes many revolutions around the core. The circuit
representing this machine is a single primary with a multi-turn secondary.

3. Because of recirculation, average gradient is not a concern in the betatron. Therefore, low
accelerating voltages and relatively long pulselengths (matched to the available volt-second
product of the core) are used. The circuit of Figure 11.2c requires a slow voltage pulse because it
has significantly higher inductance than the driving circuits of Fi re 11.2b.

4. Shaping of the voltage pulse shape is not important in the betatron. The beam is distributed
uniformly around the transport tube; there is no need for longitudinal confinement. The betatron
magnet is usually driven by a bipolar, harmonic voltage waveform that cycles the core between -
Bs and +Bs.

The slow acceleration cycle and small circuital voltage allow a number of options for
construction of the transport tube. The tube may be composed of metal interrupted azimuthally
by one or more insulating rings. It is also possible to use a metal chamber constructed of thin
stainless steel; the wall resistance must be high enough to keep inductively driven return currents
small.

Equation 11.3 is also applicable to the betatron. As an example of kinetic energy limits, takeR
= 1 m andBs = 1.5 T. The maximum kinetic energy is less than 450 MeV. Equation (11.3) has
an important implication for the scaling of betatron output energy. The beam energy increases
linearly with the radius of the central core, while the volume of core and flux return yoke
increase asR3. Cost escalates rapidly with energy; this is one of the main reasons why betatrons
are limited to moderate beam energy.

As a final topic, we shall consider why betatrons have little potential for ion acceleration. In
the discussion, ion dynamics is treated nonrelativistically. Assume an ion of massmi is contained
in a betatron with radiusR; the emf around the core isV0. The energy ions gain in a time interval
�t is eV0 multiplied by the number of revolutions, or

Equation (11.4) can be rearranged to give

Integrating Eq. (11.5) (with the assumption that the final ion energyEb is much larger than the
injection energy), we find that
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Eb � e/2mi (V0tp/2�R) (eV). (11.6)

Eb � (2e/mi) (BsR/2)2. (11.7)

Eb (ions) / Eb (electrons) � vif / c, (11/8)

R � �mev�/eBz(R) � p
�
/eBz(R). (11.9)

� E�dl � d�/dt � 2�RE
�
, (11.10)

Substituting for the volt-second product and assuming a core area�R2, Eq. (11.6) can be
rewritten

With the same magnet parameters as above (R = 1 m, Bs = 1.5 T), Eq. (11.7) implies that the
maximum energy for deuterons is only 54 MeV. Comparing Eq. (11.7) to Eq. (11.3), we find
that the ratio of maximum obtainable energies for ions compared to electrons is

wherevif is the final ion velocity. Equation (11.8) has a simple interpretation. During the same
acceleration cycle, the nonrelativistic ions make fewer revolutions around the core than electrons
and gain a correspondingly smaller energy.

11.2 EQUILIBRIUM OF THE MAIN BETATRON ORBIT

The magnitude of the magnetic field at the orbit radius of electrons in a betatron is determined
by the shape of the magnet poles. The equilibrium orbit has the following properties: (1) the
orbit is circular with a radius equal to that of the major radiusR of the vacuum chamber and (2)
the orbit is centered in the symmetry plane of the field with no vertical oscillations. This
trajectory is called themain orbit. We will consider other possible orbits in terms of
perturbations about the main orbit.

The vertical field atR is designatedBz(R). Equation (3.38) implies thatBz(R) andR are related
by

The quantityp� is the total momentum of particles on the main orbit. The magnetic field varies
with time. The azimuthal electric field acting on electrons is
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vr � 0, dpr/dt � 0,

vz � 0, dpz/dt � 0,

dp
�
/dt � eE

�
� (e/2�R) d�/dt.

(11.11)

p
�
� e [�(t) � �(0)]/2�R � (e/2�R) ��. (11.12)

Bz(R) � ��/2�R2. (11.13)

where� is the magnetic flux enclosed within the particle orbit. Particle motion on the main orbit
is described by the following equations:

Equation (11.11) is obtained from Eq. (3.34) by settingvr = 0. We assume thatR does not vary
in time; consequently, Eq. (11.11) can be integrated directly to give

Combining Eqs. (11.9) and (11.12),

Equation (11.13) is the well-knownbetatron condition. The betatron pole piece is designed so
that vertical field at the average beam radius is equal to one-half the flux change in the core
divided by the area inside the particle orbit. The betatron condition has a simple interpretation
for the machine illustrated in Figure 11.1. Electrons are injected at low energy when the orbital
field and the flux in the core are near zero. The bending field and accelerating field are produced
by the same coils, so that they are always proportional if there is no local saturation of the core
iron. The main orbit has radiusR throughout the acceleration cycle if the vertical field atR is
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equal to one-half the average field enclosed by the orbit. This condition holds both in the
nonrelativistic and relativistic regimes. The acceleration cycle is illustrated in Figure 11.3.

11.3 MOTION OF THE INSTANTANEOUS CIRCLE

The standard electron injector of a betatron consists of a thermionic source at high dc voltage
(20-120 kV) with extractor electrodes (Fig. 11.4). It is clear that such a device cannot extend to
the main orbit. The injector is located at a radius inside or outside the main orbit and is displaced
vertically from the symmetry plane. The extractor voltage is set so that the electrons have a
circular orbit of radiusR+�R in the magnetic field at injection. The betatron condition is not
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p0(0) � eBz(R)R, (11.14)

p1(0) � p0(0) � �p(0) � eBz (R��R) (R��R). (11.15)

d�1/dt � 2�R2 [dBz(R)/dt] � �

R��R

R

2�rdr [dBz(r)/dt]. (11.16)

d�1/dt � 2�R2 [dBz(R)/dt] � 2�R �R (dBz/dt) � 2�Rr [dBz(R)/dt]. (11.17)

satisfied on this orbit; therefore, the orbit radius changes during the acceleration cycle. We shall
see that the orbit asymptotically approaches the main orbit as the electron energy increases. The
circular orbit with slowly varying radius is referred to as theinstantaneous circle.

Let p0 be the momentum of a particle on the main orbit andp1 be the momentum of a particle
injected a distance�R from the main orbit on the instantaneous circle. At injection, the momenta
and magnetic fields are related by

The time variation of flux enclosed within the instantaneous circle is

Equation (11.13) has been used in the first term to express the magnetic flux in the region 0 <r
< R. Assume that field variations are small over the region near the main orbit so that

. To first order in�r, Eq. (11.16) can be rewrittenBz(r) � Bz(R)
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dp1/dt � (e/2�r) (d�1/dt) � eR [dBz(R)/dt)]. (11.18)

�p/po � �R/R. (11.19)

d 2x/dt 2
� � [F(t)/mxo] x � ��(t)2 x. (11.20)

��/� « 1. (11.21)

The equation of motion for an electron on the instantaneous circle is

We recognize that the expression on the right-hand side is equal to dpo/dt [Eq. (11.14)].
The main conclusion is that particles on the instantaneous circle gain momentum at the same

rate as particles on the main orbit, as illustrated in Figure 11.5. The ratio of the radius of the
instantaneous circle to that of the main orbit is equal to the relative momentum difference, or

The radius difference is proportional, to 1/po because�p is constant by Eq. (11.18). Therefore,
the instantaneous circle approaches the main orbit as the electron energy increases.

11.4 REVERSIBLE COMPRESSION OF TRANSVERSE PARTICLE
ORBITS

As we saw in Section 7.3, the focusing strength of magnetic field gradients is proportional to the
magnitude of the bending field. In order to describe the betatron, the derivations of particle
transport in continuous focusing systems must be extended to include time-varying focusing
forces. As an introduction, we will consider the general properties of periodic orbits when the
confining force varies slowly compared to the period of particle oscillations. The approximation
of slow field variation is justified for the betatron; the transverse oscillation period is typically
10-20 ns while the acceleration cycle is on the order of 1 ms. The results are applicable to many
beam transport systems.

To begin, consider the nonrelativistic transverse motion of a particle under the action of a
force with a linear spatial variation. The magnitude of the force may change with time. The
equation of motion is

If the time scale for the force to change,�T, is long compared to 1/�, then the solution of Eq.
(11.20) looks like the graph of Figure 11.6. The relative change in� over one period,��, is
small:
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(d�/dt) (1/�)

�
�

d�/dt

�2
« 1, (11.12)

1

� �T
« 1. (11.23)

x(t) � A(t) sin[�(t)]. (11.24)

The condition of Eq. (11.21) can be rewritten in two alternate forms:

Equations (11.21)-(11.23) give the condition for areversible compression(or reversible
expansion). The meaning of reversible will be evident when we consider properties of the
particle orbits.

Following Figure 11.6, an approximate solution to Eq. (11.20) should be oscillatory with a
slow variation of amplitude. We assume a form



Betatrons

338

x � (d 2A/dt 2)sin��2(dA/dt)(d�/dt)cos��Asin�(d�/dt)2
�A(d�/dt 2)cos� � ��2sin�.

(d 2A/dt 2) � A (d�/dt)2
� ��2 A, (11.25)

2 (dA/dt) (d�/dt) � A (d 2�/dt 2) � 0. (11.26)

� � � � dt � �o. (11.27)

2 (dA/dt)/A � � (d 2�/dt 2)/(d�/dt) � � (d�/dt)/�. (11.28)

ln(�) � �2 ln(A) � const.

� A 2
� const. (11.29)

x(t) � Ao �o/� sin � � dt � �o . (11.30)

The quantitiesA(t) and�(t) are determined by substituting Eq. (11.24) into Eq. (11.20) and
dropping terms of order or higher.(1/��T)2

Calculating the derivatives and substituting,

The solution must hold at all values of�. Therefore, the sin� and cos� terms must be
individually equal, or

The first term in Eq. (11.25) is of orderA/�T2. This term is less than the expression on the
right-hand side by a factor (1/��T)2, so it can be neglected. Equation (11.25) becomes

; therefore,d�/dt � �

Substituting this expression in Eq. (11.26) gives

Integrating both sides of Eq. (11.28),

or

The approximate solution of Eq. (11.20) is

Taking the derivative of Eq. (11.30), the particle velocity is
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x(t) � Ao �o/� cos � � dt � �o � ((d�/dt)/2�2) sin � � dt � �o

� Ao �o/� cos � � dt � �o .
(11.31)

Hving solved the problem mathematically, let us consider the physical implications of the
results.

1. At a particular time, the particle orbits approximate harmonic orbits with an angular frequency
� determined by the magnitude of the force. The amplitude and angular frequency of the
oscillations changes slowly with time.

2. As the force increases, the amplitude of particle oscillations decreases, . Thisxmax � 1/ �
process is called compression of the orbit.

3. The particle velocity is approximately 90� out of phase with the displacement.

4. The magnitudes of the velocity and displacement are related by
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vx,max � � xmax. (11.32)

xmax vx,max � const. (11.33)

�vxo � 2vw. (11.34)

5. The product of the displacement and velocity is conserved in a reversible process, or

Figure 11.7 gives a graphical interpretation of the above conclusions. Particle orbits are plotted
in phase space withx andvx as axes. Inspection of Eqs. (11.30) and (11.31) shows that particle

orbits acted on by a linear force are ellipses in phase space. Orbits are plotted in Figure 11.7 for
a slow increase in focusing force (reversible compression). Although the oscillation amplitude
changes, the net phase space area included within the orbit is constant. If the force slowly returns
to its initial value, the particle orbit is restored to its original parameters; hence, the term
reversible.

The properties of reversible compressions are not limited to linear forces but hold for
confinement forces with any spatial variation. Consider, for instance, a particle contained by the
square-well potential illustrated in Figure 11.8. The force is infinite atx = xo and x = -xo . The
particle has constant velocityvxo except at the reflection points. The walls move inward or
outward slowly compared to the time scalexo(t)/vxo(t). In other words, the constant wall velocity
vw is small compared tovxo(t) at all times.

Particles reflect from the wall elastically. Conservation of momentum implies that the
magnitude ofvxo is constant if the wall is stationary. If the wall moves inward at velocityvw, the
particle velocity after a collision is increased by an amount

In a time interval�t, a particle collides with the walls times. Averaging overvxo(t)�t/2xo(t)
many collisions, we can write the following differential equation:
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dvxo/dt � 2vwvxo(t)/2xo(t). (11.35)

dxo � �vwdt. (11.36)

xo(t) vxo(t) � const. (11.37)

xo � 1/ �,

The equation of the wall position is orxo(t) � xo(0) � vx(t)t,

Substituting into Eq. (11.35), we find ordvxo/vxo � �dxo/xo,

This is the same result that we found for the harmonic potential. Similarly, defining the periodic
frequency Eq. (11.37) implies that� � vxo(t)/xo(t),
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x2
o � � const. (11.38)

�r � �g 1�n, (11.39)

�z � �g n, (11.40)

dpz(t)/dt � d[m(t)vz(t)]/dt � �m(t) �z(t)
2 z. (11.41)

(d 2z/dt) � (dm/dt)(dz/dt)/m � �
2
z z � 0. (11.42)

or

as before. A phase space plot of particle orbits in a highly nonlinear focusing system during a
reversible compression is given in Figure 11.9.

11.5 BETATRON OSCILLATIONS

Reviewing the conclusions of Section 7.3, particles in a gradient magnetic field perform
harmonic oscillations about the main orbit in the radial and vertical directions. The frequencies
of oscillation are

wheren is the field index and . In the betatron, the magnitude of the magnetic�g � eBz(R)/�me
field increases (�g is a function of time) while the relative shape remains constant (n is
constant). The focusing force increases; therefore, the amplitude of oscillations in the radial and
vertical directions decreases and particles move closer to the main orbit. This process is often
called damping of betatron oscillations, although this is a misnomer. The process is reversible
and no dissipation is involved.

The mathematical description of betatron oscillations is similar to that of Section 11.4 except
that the variation of electron mass with energy must be taken into account for relativistically
correct results. We shall consider motion in the vertical direction; the derivation for radial
motion is a straightforward extension. With the assumption that , the transversevz « v

�

approximation (Section 2.10) can be applied. This means that vertical motions do not influence
the value of�.

The vertical equation of motion for a linear force can be written

Expanding the time derivative, Eq. (11.41) becomes

Again, we seek a solution of the form
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z � A(t) sin�z(t). (11.43)

(�2
z��

2
z) A sin�z � [A(d 2�z/dt 2) � 2(dA/dt)(d�z/dt) � A(dm/dt)(d�z/dt)/m] cos�z

� [(d 2A/dt 2) � (dA/dt)(dm/dt)/m] sin�z � 0.
(11.44)

�
2
z � (d�z/dt)2. (11.45)

�z � � �zdt � �O. (11.46)

A (d 2�z/dt 2) � 2 (dA/dt) (d�z/dt) � A [(dm/dt)/m] �z � 0. (11.47)

d(A 2m�z)/dt � 0,

A 2m�z � const. (11.48)

vz,max � zmax �z � A �z. (11.49)

Substituting in Eq. 11.42,

We can show by dimensional arguments that the third term of Eq. (11.44) is smaller than the
first term by a factor of (l/��T)2, where�T is the time scale of the acceleration cycle.
Therefore, to first order, the first term is approximately equal to zero:

Equation (11.45) gives the same result as the nonrelativistic derivation [Eq. (11.27)]:

Setting the second term equal to zero gives

We can show that Eq. (11.47) is equivalent to

or

There are some interesting implications associated with the above derivation. As before, the
vertical displacements and velocity are 90� out of phase with magnitudes related by
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m vz,max zmax � zmax pz,max � const. (11.50)

The conservation law for a relativistic reversible compression is

For relativistic particles, the area circumscribed by an orbit is constant if it is plotted in phase
space axes of displacement and momentum rather than displacement and velocity.

11.6 ELECTRON INJECTION AND EXTRACTION

Particle injection into linear accelerators is not difficult. In contrast, injection is a significant
problem for circular accelerators, particularly those with constant beam radius such as the
betatron. This is one of the reasons why high current electron beams have not yet been
accelerated in betatrons. The conventional betatron electron source consists of a thermionic
cathode located in the vacuum chamber (Fig. 11.4) capable of emitting 1-2 A current. The
cathode is biased to high negative potential and electrons are extracted and focused by shaped
electrodes. The emerging beam has a large spread in particle direction. The source is pulsed on
for a few microseconds at the time when electrons will travel on an instantaneous circle orbit in
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the rising bending magnetic field.
Following injection, the combined effects of inward motion of the instantaneous circle and

damping of betatron oscillations carries electrons away from the injector so that some are
trapped. The process is illustrated in Figure 11.10. Without such effects, the electrons would
eventually strike the back of the injector. The fraction of electrons trapped is increased if the
injector is
displaced vertically from the main orbit. Because of the vertical oscillations, particles may travel
many revolutions before striking the injector, even in the absence of radial motion.

As an example, consider a 300-MeV betatron with main orbit radius of 1 m operating at 180
Hz. The rate of energy gain is about 7 keV/turn. If the injection energy is 100 keV and the
initial instantaneous circle has radius 1.05 m, then Eq. (11.19) implies that the orbit moves
radially inward a distance 0.24 cm in a single turn. If vertical oscillations allow the particles
5-10 turns,
this radial motion is sufficient to trap a substantial number of electrons.

The main limit on trapping in a high-energy betatron appears to result from beam space charge
effects. Focusing is weak at injection because of the low applied magnetic field. In the example
above, the injection field is only 10-3 T. Estimating the space charge force and specifying a
balance with the vertical focusing force leads to a predicted equilibrium current of less than 1 A
for a
beam with 4 cm vertical extent. This figure is consistent with the maximum current observed in
betatrons. The dominant role of space charge in limiting injection current is consistent with the
fact the trapped current increases significantly with increased injector voltage. The injection
efficiency for high-energy betatrons with an internal, electrostatic injector is typically only a few
percent.

Trapping mechanisms are not as easily explained in small, low-energy betatrons. In a machine
with output energy of 20 MeV, motion of the instantaneous circle is predicted to be on the order
of only 2 × 10-3 cm. Nonetheless, the trapped current is observed to be much higher than that
predicted from single-particle orbit dynamics combined with the probability of missing the
injector. The most widely accepted explanation is that collective particle effects are responsible
for the enhanced trapping. There is a substantial inductance associated with the changes of beam
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current around the ferromagnetic core. The increasing beam current during the injection pulses
induces a back emf that is larger than the accelerating emf of the core. The inductive electric
field decelerates electrons. The effect is almost independent of radius, so that particle orbits
shrink toward the main orbit much more rapidly than predicted by the arguments of Section
11.3. This explanation is supported by the fact that trapping in low-energy betatrons is improved
considerably when orbit contraction coils are incorporated in the machine. These rapidly pulsed
coils enhance the self-field effects by inducing a back emf.

Extraction of electron beams from betatrons is accomplished with a magnetic peeler,
illustrated in Figure 11.11. This device is a magnetic field shunt located on an azimuth outside
the radius wheren = 1. It cannot be located too close to the main orbit because the associated
magnetic field perturbation would cause particle loss during the low-energy phase of the
acceleration cycle. If particles are forced past then = 1 radius, radial focusing is lost and they
spiral outward into the peeler. There are a number of options for inducing radial motion of the
betatron beam. One possibility is an orbit expander coil. The expander coil is activated at the
peak of the electron energy. It subtracts from the bending field in the beam chamber, causing the
beam radius to expand. Another method of moving electrons out in radius is to induce betatron
oscillations by resonant fields. Electric or magnetic fields oscillating at are generated1�n �g
by coils or plates at particular azimuthal positions. If the growth of betatron oscillations is rapid,
the beam spills out at a specific azimuth.

The maximum current that can be contained in a betatron is determined by a balance between
the mutual repulsion between electrons and the focusing forces. In terms of space-charge
equilibrium, the gradient focusing strength in a betatron at peak field (� 1 T) is sufficient to
contain a high-energy (- 300 MeV) electron beam with current in excess of 10 kA. A
high-energy electron beam is stiff and largely confined by its own magnetic fields; therefore, an
extension of conventional betatron extraction techniques would be sufficient to extract the beam
from the machine. Containing the beam during the low-energy portion of the acceleration phase
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is the major impediment to a high-current, high-efficiency betatrons. Two methods appear
feasible to improve the operation of betatrons: (1) high-energy injection and (2) addition of
supplemental focusing devices.

In the first method, illustrated in Figure 11.12, a high-current, high-energy beam from a linear
induction accelerator is injected in a single turn into the betatron. To facilitate injection, the
betatron could be constructed in a racetrack configuration. The circular machine is split into two
parts connected by straight sections. Injection and extraction are performed in the straight
sections, which are free of bending fields. The betatron performs the final portion of the
acceleration cycle (for example, from 100 to 300 MeV). The current limit in the betatron is high
for two reasons: (1) the bending field and its gradients are large and (2) the self-magnetic field
force of the relativistic beam almost balances the self-electric field repulsion so that space charge
effects are of reduced importance. The beam is directed along the main orbit by a pulsed
electrostatic inflector. The radial inflector field is activated only during a single transit of the
beam around the accelerator; otherwise, it would deflect the trapped beam onto an exit orbit
similar to the extrance orbit. The combination of induction linear accelerator and betatron is a
good symbiosis for high-flux electron beams. The induction accelerator, with its strong
solenoidal focusing magnets, solves the problem of injection and low-energy transport. The
betatron provides the bulk of the particle acceleration. The combined accelerator would have a
size and core volume much smaller than that of a 300-MeV linear induction accelerator.

A second approach to high-flux betatrons is to supplement gradient focusing with axi-centered
focusing lenses arrayed around the toroidal vacuum chamber. Some options, illustrated in Figure
11.13, include (1) a bent solenoidal field (toroidal field), (2) discrete solenoidal magnetic lenses
with reversing applied field direction, and (3) an array of magnetic quadrupole lenses in an
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FD configuration. The study of alternate focusing methods in betatrons is an active area of
research. There are some difficult technological problems to be solved. For instance, injection
into a betatron with a strong toroidal field is considerably more difficult than injection into a
standard geometry, even at low current. The main problem in any strong focusing betatron is the
fact that
the beam must pass through the	 = 1 condition (see Section 7.2). When the low-energy beam is
injected, the strong space charge forces require strong supplementary focusing. Strong focusing
implies that the betatron wavelength is less than the circumference of the machine; thus,	 > 1 in
both the radial and vertical directions. At the end of the acceleration cycle, gradient field
focusing dominates. The orbits resemble those in a conventional betatron with	 < 1. Passage
through the resonance condition could be avoided by increasing the supplementary focusing
fields with the bending fields and keeping	 > 1. This is not technologically practical since the
focusing system would require high energy input. Passage through the	 = 1 condition may
result in complete loss of the beam. There is a possibility that the severity of resonance
instabilities could be reduced by a nonlinear focusing system, a fast acceleration cycle, or tuned
electrostatic lenses that sweep the focusing system rapidly through the resonance condition.

11.7 BETATRON MAGNETS AND ACCELERATION CYCLES

The kinetic energy limit of betatrons is tied closely to the saturation properties of iron. Although
air core betatrons have been operated successfully, they are impractical except for small research
devices because of the large circulating energy and power losses involved. The volume of
magnetic field outside the iron core should be minimized for the highest accelerator efficiency
and lowest cost. With these factors in mind, we will review some of the types of betatron
magnets that have been developed. The order will be roughly historical, proceeding from the
simplest circuits at low energy to the highest energy attained.

An early betatron for electrons at 20 MeV is illustrated in Figure 11.1. The acceleration cycle
is illustrated in Figure 11.3. The core flux and bending field are part of the same magnetic
circuit; therefore, they are proportional to one another. A betatron driving circuit is illustrated in
Figure 11.14. The inductance represents the betatron core and windings; a resistor has been
included
to represent energy loss through winding resistivity, hysteresis, and eddy currents. The beam
load is also indicated; at current typical of conventional betatrons, the impedance of the beam
load is high. The beam current is much smaller than the leakage current. In order to keep the
power consumed by the betatron at a reasonable level, the core inductor is often combined with a
capacitor bank to form a resonant circuit. The leakage current is supported as reactive current in
the resonant circuit; a fraction of the energy of the underdampedLC circuit is lost on each cycle
to resistive losses and beam acceleration. The stored energy of the capacitor bank is topped up
on each cycle by a driving circuit with high-power vacuum tubes.

The components of the resonant circuit fulfill the following conditions:



Betatrons

349

f � 2� / LC.

Um � � dx3 (B 2/2µ).

1.The circuit has the desired resonant frequency, or

Typically, betatrons operate at 180 Hz.

2.The stored energy in the capacitor bank, ½CV0
2, equals the total magnetic field energy at the

peak of the acceleration cycle,

3. The ampere turns in the coil box are sufficient to produce the field in the air gap.

The above conditions can be combined to determine the capacitor bank voltage and number of
turns in the coil box given the operating parameters of the betatron.

The betatron of Figure 11.1 has a major drawback for application to high-energy beams. Most
of the energy in the drive circuit is utilized to produce magnetic flux in the central air gap. This
translates into a large capacitor bank to store energy and increased resistive losses because of the
high NI product of the coil. In order to extend the betatron to higher energy and keep power
consumption low enough to run on a continuous basis, it is clearly advantageous to eliminate the
air gap. One solution is illustrated in Figure 11.15a. The magnetic flux at the electron orbit is
produced by a separate magnet circuit. The beam transport circuit has its own flux-guiding core
and magnet windings. The size of the capacitor bank is reduced considerably, and power losses
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are typically only one-third those that would occur with a single-magnet circuit. The
disadvantage of the design is the increased complexity of assembly and increased volume of the
main circuit core in order to accommodate the bending field circuit.

An interesting problem associated with the betatron of Figure 11.15a is how to drive the two
magnetic circuits with close tracking between the transport fields and acceleration flux. An
effective solution is to connect both magnets to the same power supply in parallel, as shown in
Figure 11.15b. Because the voltage across the windings must be the same, the flux change
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through both windings is the same. Thus, if the number of turns and geometry of the windings
are chosen properly, the ratio of bending field and core flux will be correct throughout the
acceleration cycle, independent of the effective µ values in the two cores. This is another
application offlux forcing(see Section 10.4).

The magnet design of Figure 11.16a represents another stage of improvement. It is much
simpler than the magnet of Figure 11.15a and still produces a bending field without an air gap.
In order to understand how this configuration works, we shall approach the circuit in parts and
then determine the total magnetic field by superposition. First, consider a single coil inside the
radius of the vacuum chamber, as shown in Figure 11.16b. All the magnetic flux flows through
the central core as shown. In the second stage (Fig. 11.16c), we consider the field produced by a
winding inside the vacuum chamber carrying current -NI and a windings outside the chamber
carrying current +NI. This produces a bending field at the main orbit, and flux returns through
the core as shown. In the final configuration, Figure 11.16d, the external windings are present
and the windings on the flux coil are reduced by -NI ampere turns to generate the net field.
Proper choice of the number of turns on the flux coil versus the field coils plus shunting of the
bending field gap assures that the betatron condition is satisfied.

A further improvement to the magnet of Figure 11.16 to reach higher beam energy is to utilize
the full available flux swing of the central core during acceleration. In the previous acceleration
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cycles we have discussed, the core field changes from 0 to +Bs while the bending field changes
from 0 to +½Bs. Inspection of Eq. (11.13) shows that the betatron condition is expressed in
terms of the change of included flux, not the absolute value. An acceleration cycle in which the
core magnetic field changes from -Bs to +Bs, while the bending field changes from 0 to +Bs

satisfies the betatron condition and doubles the final electron energy for a given core size. There
are two methods to achieve an acceleration cycle with full flux swing,field biasingandflux
biasing. Field biasing is illustrated in Figure 11.17a. A dc component of magnitude +½Bs is
added to the bending field. Acceleration takes place over a half-cycle of the ac waveform. For
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flux biasing, dc bias windings are added to the core circuit to maintain the core at -Bs. Bias
windings are illustrated in Figure 11.16. The field and flux coils are energized in parallel to
produce the accelerating waveform illustrated in Figure 11.17b. Acceleration takes place over
one quarter-cycle. The main technological difficulty associated with flux biasing is that the core
is driven to saturation, resulting in increased hystersis and eddy current losses. Also, during the
negative half-cycle, the core has µ = µo so that the circuit inductance varies considerably.
Betatrons with flux biasing are usually driven by pulse power modulators rather than resonant
circuits. A pulsed acceleration cycle is shown in Figure 11.17c.

A modern commercial betatron for radiation therapy is illustrated in Figure 11.18a. The
machine accelerates electrons to a maximum kinetic energy of 45 MeV to generate deeply
penetrating radiation. Electrons can be extracted directly or used to generate forward-directed
gamma rays on an internal target. The 12,000-kG machine and the treatment table can be moved
to a variety of positions to achieve precise dose profiles. A cross section of the betatron (Fig.
11.18b) illustrates operation in the gamma ray and electron modes.


