Principles of Charged Particle Acceleration

Stanley Humphries, Jr.

Department of Electrical and Computer Engineering
University of New Mexico
Albuquerque, New Mexico

(Originally published by John Wiley and Sons. Copyright ©1999 by Stanley Humphries, Jr. All rights reserved. Reproduction of translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to Stanley Humphries, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131.

To my parents, Katherine and Stanley Humphries
Preface to the Digital Edition

I created this digital version of *Principles of Charged Particle Acceleration* because of the large number of inquiries I received about the book since it went out of print two years ago. I would like to thank John Wiley and Sons for transferring the copyright to me. I am grateful to the members of the Accelerator Technology Division of Los Alamos National Laboratory for their interest in the book over the years. I appreciate the efforts of Daniel Rees to support the digital conversion.

STANLEY HUMPHRIES, JR.

University of New Mexico
July, 1999

Preface to the 1986 Edition

This book evolved from the first term of a two-term course on the physics of charged particle acceleration that I taught at the University of New Mexico and at Los Alamos National Laboratory. The first term covered conventional accelerators in the single particle limit. The second term covered collective effects in charged particle beams, including high current transport and instabilities. The material was selected to make the course accessible to graduate students in physics and electrical engineering with no previous background in accelerator theory. Nonetheless, I sought to make the course relevant to accelerator researchers by including complete derivations and essential formulas.

The organization of the book reflects my outlook as an experimentalist. I followed a building block approach, starting with basic material and adding new techniques and insights in a programmed sequence. I included extensive review material in areas that would not be familiar to the average student and in areas where my own understanding needed reinforcement. I tried to make the derivations as simple as possible by making physical approximations at the beginning of the derivation rather than at the end. Because the text was intended as an introduction to the field of accelerators, I felt that it was important to preserve a close connection with the physical basis of the derivations; therefore, I avoided treatments that required advanced methods of mathematical analysis. Most of the illustrations in the book were generated numerically from a library of demonstration microcomputer programs that I developed for the courses. Accelerator specialists will no doubt find many important areas that are not covered. I apologize in advance for the inevitable consequence of writing a book of finite length.
I want to express my appreciation to my students at Los Alamos and the University of New Mexico for the effort they put into the course and for their help in resolving ambiguities in the material. In particular, I would like to thank Alan Wadlinger, Grenville Boicourt, Steven Wipf, and Jean Berlijn of Los Alamos National Laboratory for lively discussions on problem sets and for many valuable suggestions.

I am grateful to Francis Cole of Fermilab, Wemer Joho of the Swiss Nuclear Institute, William Herrmannsfeldt of the Stanford Linear Accelerator Center, Andris Faltens of Lawrence Berkeley Laboratory, Richard Cooper of Los Alamos National Laboratory, Daniel Prono of Lawrence Livermore Laboratory, Helmut Milde of Ion Physics Corporation, and George Fraser of Physics International Company for contributing material and commenting on the manuscript. I was aided in the preparation of the manuscript by lecture notes developed by James Potter of LANL and by Francis Cole. I would like to take this opportunity to thank David W. Woodall, L. K. Len, David Straw, Robert Jameson, Francis Cole, James Benford, Carl Ekdahl, Brendan Godfrey, William Rienstra, and McAllister Hull for their encouragement of and contributions towards the creation of an accelerator research program at the University of New Mexico. I am grateful for support that I received to attend the 1983 NATO Workshop on Fast Diagnostics.

STANLEY HUMPHRIES, JR.

University of New Mexico
December, 1985
Contents

1. **Introduction** ... 1

2. **Particle Dynamics** 8
 2.1. Charged Particle Properties 9
 2.2. Newton's Laws of Motion 10
 2.3. Kinetic Energy 12
 2.4. Galilean Transformations 13
 2.5. Postulates of Relativity 15
 2.6. Time Dilation 16
 2.7. Lorentz Contraction 18
 2.8. Lorentz Transformations 20
 2.9. Relativistic Formulas 22
 2.10. Non-relativistic Approximation for Transverse Motion 23

3. **Electric and Magnetic Forces** 26
 3.1. Forces between Charges and Currents 27
 3.2. The Field Description and the Lorentz Force 29
 3.3. The Maxwell Equations 33
 3.4. Electrostatic and Vector Potentials 34
 3.5. Inductive Voltage and Displacement Current 37
 3.6. Relativistic Particle Motion in Cylindrical Coordinates 40
 3.7. Motion of Charged Particles in a Uniform Magnetic Field 43

4. **Steady-State Electric and Magnetic Fields** ... 45
 4.1. Static Field Equations with No Sources 46
 4.2. Numerical Solutions to the Laplace Equation 53
 4.3. Analog Methods to Solve the Laplace Equation ... 58
 4.4. Electrostatic Quadrupole Field 61
 4.5. Static Electric Fields with Space Charge 64
 4.6. Magnetic Fields in Simple Geometries 67
 4.7. Magnetic Potentials 70
5. Modification of Electric and Magnetic Fields by Materials

5.1. Dielectrics
5.2. Boundary Conditions at Dielectric Surfaces
5.3. Ferromagnetic Materials
5.4. Static Hysteresis Curve for Ferromagnetic Materials
5.5. Magnetic Poles
5.6. Energy Density of Electric and Magnetic Fields
5.7. Magnetic Circuits
5.8. Permanent Magnet Circuits

6. Electric and Magnetic Field Lenses

6.1. Transverse Beam Control
6.2. Paraxial Approximation for Electric and Magnetic Fields
6.3. Focusing Properties of Linear Fields
6.4. Lens Properties
6.5. Electrostatic Aperture Lens
6.6. Electrostatic Immersion Lens
6.7. Solenoidal Magnetic Lens
6.8. Magnetic Sector Lens
6.9. Edge Focusing
6.10. Magnetic Quadrupole Lens

7. Calculation of Particle Orbits in Focusing Fields

7.1. Transverse Orbits in a Continuous Linear Focusing Force
7.2. Acceptance and P of a Focusing Channel
7.3. Betatron Oscillations
7.4. Azimuthal Motion of Particles in Cylindrical Beams
7.5. The Paraxial Ray Equation
7.6. Numerical Solutions of Particle Orbits

8. Transfer Matrices and Periodic Focusing Systems

8.1. Transfer Matrix of the Quadrupole Lens
8.2. Transfer Matrices for Common Optical Elements
8.3. Combining Optical Elements
8.4. Quadrupole Doublet and Triplet Lenses
8.5. Focusing in a Thin-Lens Array
8.6. Raising a Matrix to a Power
8.7. Quadrupole Focusing Channels
9. Electrostatic Accelerators and Pulsed High Voltage

- 9.1. Resistors, Capacitors, and Inductors 197
- 9.2. High-Voltage Supplies 204
- 9.3. Insulation 211
- 9.4. Van de Graaff Accelerator 221
- 9.5. Vacuum Breakdown 227
- 9.6. LRC Circuits 231
- 9.7. Impulse Generators 236
- 9.9. Transmission Lines as Pulsed Power Modulators 246
- 9.10. Series Transmission Line Circuits 250
- 9.11. Pulse-Forming Networks 254
- 9.13. Pulsed Power Switching by Saturable Core Inductors 263

10. Linear Induction Accelerators

- 10.1. Simple Induction Cavity 284
- 10.2. Time-Dependent Response of Ferromagnetic Materials 291
- 10.3. Voltage Multiplication Geometries 300
- 10.4. Core Saturation and Flux Forcing 304
- 10.5. Core Reset and Compensation Circuits 307
- 10.6. Induction Cavity Design: Field Stress and Average Gradient 313
- 10.7. Coreless Induction Accelerators 317

11. Betatrons

- 11.1. Principles of the Betatron 327
- 11.2. Equilibrium of the Main Betatron Orbit 332
- 11.3. Motion of the Instantaneous Circle 334
- 11.4. Reversible Compression of Transverse Particle Orbits 336
- 11.5. Betatron Oscillations 342
- 11.6. Electron Injection and Extraction 343
- 11.7. Betatron Magnets and Acceleration Cycles 348

12. Resonant Cavities and Waveguides

- 12.1. Complex Exponential Notation and Impedance 357
- 12.2. Lumped Circuit Element Analogy for a Resonant Cavity 362
- 12.3. Resonant Modes of a Cylindrical Cavity 367
- 12.4. Properties of the Cylindrical Resonant Cavity 371
- 12.5. Power Exchange with Resonant Cavities 376
- 12.6. Transmission Lines in the Frequency Domain 380
- 12.7. Transmission Line Treatment of the Resonant Cavity 384