22.54 Neutron Interactions and Applications (Spring 2002)

Problem Set No. 2 Due: Feb. 19, 2002

Problem 1

(a) Consider a plane wave incident upon a spherically symmetric potential V(r) of finite range r_0 . Derive the angular differential scattering cross section in the form,

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 \tag{1}$$

where $f(\theta)$ is the scattering amplitude (explain how this quantity is introduced into the problem).

- (b) In the case of low-energy scattering where only the s-wave contribution is important (explain what this means), show how one can determine $f(\theta)$ using the given V(r).
- (c) Define the scattering length a. Rewrite Eq.(1) in terms of a.
- (d) Apply your results above to neutron-proton scattering where the potential is given as a spherical well, $V(r) = -V_0$ for $r < r_0$, and V(r) = 0 for $r > r_0$, with $V_0 = 36$ MeV and $r_0 = 2$ F (1 F = 10⁻¹³ cm). Find a, $d\sigma/d\Omega$, and the cross section σ .
- (e) Comment on your results in (d). Is your value of σ in agreement with experiment? If not, describe briefly what is missing.

Problem 2

- (a) Consider the kinematics of neutron elastic scattering by a nucleus with mass number A. Derive the relation $E' = \frac{1}{2} E[(1+\alpha) + (1-\alpha)\cos\theta_c]$, where E, E' are the initial and final energies of the neutron in LCS and θ_c is the scattering angle in CMCS.
- (b) Find the scattering frequency $F(E \to E')$ for the case where the angular distribution of the scattered neutron in CMCS is forward biased, i.e., $P(\underline{\Omega}_c) = \frac{1}{4\pi} (1 + a \cos \theta_c)$.

Comment on your result and compare it with the case where P is spherically symmetric.