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1. Fusion Transport estimates: Consider a tokamak fusion plasma with parameters,

T ' 20 KeV

n = 1020 m−3

B = 5 T

Bp =
ε

q
B ' 1 T

a = 3 m

R = 9 m

Here, Bp, is the poloidal magnetic field. Estimate the particle and energy confinement times,
τp = a2/D, and, τE = a2/χ, where diffusion and thermal diffusivity coefficients are to be
computed with the poloidal gyroradius. Write down the formulas for D and χ first, in terms
of appropriate collision frequencies. State your assumptions. Now make an estimate of the
neoclassical pinch time scale, assuming the pinch velocity to be,

Vp =
ET

Bp

and you may take the toroidal loop voltage to be, VT = 0.02 V olts. Compare the pinch and
particle diffusion time scales and state which effect is strongest.

2. Diffusion equation solution and properties: Show that the function,

P (x, t) =
1√

4πDt
exp

(

− x2

4Dt

)

solves the diffusion equation,
∂P

∂t
= D

∂2P

∂x2

with intial condition, P (x, 0) = δ (x), with, δ, being the Dirac delta function. As such this
P may be interpreted as a probability density for a particle launched from the origin on a
random walk. Verify the other properties of P required by this interpretation,

∫

+∞

−∞

dxP (x, t) = 1

∫

+∞

−∞

dxxP (x, t) = 〈x〉 = 0

∫

+∞

−∞

dxx2P (x, t) =
〈

x2
〉

= 2Dt
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3. Diffusion Equation Green’s Function: A particle launched from position, x′, has the
probability,

P (x, t) =
1√

4πDt
exp

(

−(x − x′)2

4Dt

)

This function can be used as a Green′s function, G (x, x′, t), for the intial value problem
(on the full space, −∞ ≤ x ≤ +∞), since it solves the diffusion equation and goes to,
G (x, x′, t) → δ (x − x′), as t → 0.

Show that for any initial temperature distribution, T0 (x) = T (x, 0), the integral,

T (x, t) =

∫

dx′G
(

x, x′, t
)

T0

(

x′
)

satisfies the diffusion equation for temperature, with boundary condtion, T (|x| → ∞, t) → 0.

4. Metallic Heat Conduction: This is a 1D model problem for putting the end of one long
metallic bar into a big water tank with a constant temperature TH . Assume the bar is at
zero temperature before it reaches the tank. Consider this as a 1-D heat transport problem.
Please solve the heat diffusion equation for T (x, t) and plot the resultant T (x, t) at a series
of time moments t. Assume the heat diffusivity of the bar is χ0. T (x, t) satisfies

∂T

∂t
= χ0

∂2T

∂x2
, 0 < x < +∞, 0 < t < +∞

T (x, 0) = 0, 0 < x < +∞
T (0, t) = TH , 0 < t < +∞

(Hint: You may want to use the Green’s function result of problem 3 . Try to extend the
initial condition T (x, 0) to the whole range of spatial space, i.e., −∞ < x < +∞. )

5. Monte Carlo solution to diffusion equation and demonstration of the Central Limit Theorem.
This problem gives you a numerical scheme that can be generalized to solve quite complex
transport problems and in the process gives you a example of how the Central Limit Theorem
works. It is named after the famous gambling country along the Riveira!

For reference, with somewhat crude phrasing, the Central Limit Theorem states the following:

A random variable that is the sum of a large number of independent random variables obeys
a Gaussian probability distribution regardless of the probability distribution of the individual

random variables in the sum. Formally, when,

R =
N
∑

n=0

Rn

then, P (R) → Gaussian, for any, P (Rn) , as N → ∞.

We can use this property to make a random walk scheme that is efficient numerically (does
not require the random steps, Rn, be picked from a Gaussian distribution) and gives the
Gaussian for large numbers of particles. Here is a simple scheme: Let Rn be picked by
computer generating a random number between −1/2 and +1/2, and then take a spatial step
according to,

δxn = sRn

2



with, s , a scale factor to make the variance of this correct for the diffusion process. This
means, with,

X ≡
N
∑

n=0

δxn

〈

X2
〉

≡ N
〈

δx2
n

〉

= 2N

for a diffusion process with diffusion coefficient, D = 1. Therefor the scale factor, s , is
computed such that,

〈

δx2
n

〉

= s2
〈

R2
n

〉

= 2

Calculate the variance of
〈

R2
n

〉

, of Rn and to show that,

s =
√

24

Yong Xiao has made up a nice little Matlab code (http://web.mit.edu/hardes/www/prob1Fall03/)
so you can watch the diffusion and measure diffusion constant. Change the scale factor to see
whether the measured diffusion constant is consistant with what you predict from theory.
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