Subject 24.242. Logic II. Homework due March 6.

1. Show that the function Pair given by $\operatorname{Pair}(x, y)=1 / 2\left(x^{2}+2 x y+y^{2}+x+3 y\right)$ is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N}.
2. Show that the set of prime numbers is a bounded set.
3. Write down a bounded formula that says that $\mathrm{x}>0$ and z is the remainder on dividing y by x .
4. Using the result from problem 3, show that Goldbach's conjecture - "Every even number > 2 is the sum of two primes" - can be formalized as a Π sentence.
5. Show that, for any Σ sets A and B , there exist Σ sets $\mathrm{C} \subseteq \mathrm{A}$ and $\mathrm{D} \subseteq \mathrm{B}$ with $\mathrm{C} \cap \mathrm{D}=\varnothing$ and $\mathrm{C} \cup \mathrm{D}=\mathrm{A} \cup \mathrm{B}$.
6. Show that, for any Σ binary relation R, there is a Σ partial function f with $\operatorname{Dom}(f)=\{x:(\exists y)$ $<\mathrm{x}, \mathrm{y}>\in \mathrm{R}\}$ and with $<\mathrm{x}, \mathrm{f}(\mathrm{x})>\in \mathrm{R}$ for each $\mathrm{x} \in \operatorname{Dom}(\mathrm{f})$.
7. Show that, for any two nonoverlapping Π sets A and B there is a Δ set C that includes A and is disjoint from B.
