Subject 24.242. Logic II. Homework due Wednesday, April 3.
For problems 1-4, a register machine consists of an infinite number of memory locations, named Register 1, Register 2, Register 3, and so on, each of which is capable of holding a natural number. A register program is a finite numbered list of instructions, which take the following five forms:

Add 1 to the number in Register i .
Subtract 1 from the number in Register j , unless that number is already 0 .
If the number in Register k is 0 , go to instruction m
Go to instruction n .
STOP.
A computation starts at the first instruction, and proceeds from an instruction to the next, unless instructed otherwise. To calculate an n-ary function, begin with the inputs in Registers 1 through n . If the computation eventually reaches the STOP instruction, the computation halts, and the number in Register 1 is the output. If the computation never reaches the STOP instruction, the function is undefined for that input. For example, the following program computes the successor function:

1. Add 1 to Register 1.
2. Stop.

The following program computes the characteristic function of the identity relation, the binary function that yields output 1 if $x=y$ and 0 if $x \neq y$:

1. If the number in Register 1 is 0 , go to instruction 6 .
2. If the number in Register 2 is 0 , go to instruction 10.
3. Subtract 1 from the number in Register 1 , unless that number is already 0 .
4. Subtract 1 from the number in Register 2, unless that number is already 0.
5. Go to instruction 1.
6. If the number in Register 2 is 0 , go to instruction 8 .
7. STOP.
8. Add 1 to the number in Register 1.
9. STOP.
10. Subtract 1 from the number in Register 1 , unless that number is already 0 .
11. If the number in Register 1 is 0 , go to instruction 9 .
12. Go to instruction 10.
13. Write a register program that calculates $\operatorname{Min}(\mathrm{x}, \mathrm{y})$.
14. Write a register program that calculates $\operatorname{Max}(x, y)$.
15. Write a register program that calculates $(x+y)$.
16. Write a register program that calculates ($\mathrm{x} \bullet \mathrm{y}$).
17. Show that the function \#, given by the following specification, is a Σ function:

$$
\begin{aligned}
& x \# 0=1 . \\
& x \# \text { sy }=(x \text { E }(x \# y)) .
\end{aligned}
$$

6. Show that, if f is a Σ total function, the function g given by

$$
g(n)=\sum_{i=0}^{n} f(i)
$$

is Σ.
7. Recall that the closed terms of the language of arithmetic constitute the smallest class of expressions that:
contains " 0 "
contains $s \tau$ whenever it contains τ : and
contains $(\tau+\rho),(\tau \bullet \rho)$, and $(\tau \mathrm{E} \rho)$ whenever it contains τ and ρ.
Give an algorithm for determining whether a string of symbols is a closed term.
8. Let \mathfrak{A} be a nonstandard model of true arithmetic. Show that there is no formula $\phi(x)$ of the language of arithmetic that is satisfied by all the standard numbers of the model and none of the nonstandard numbers.
9. Prove the Overspill Principle: If $\phi(x)$ is a formula of the language of arithmetic that is satisfied by arbitrarily large standard elements of a nonstandard model \mathfrak{A} of true arithmetic, then $\phi(\mathrm{x})$ is satisfied by some nonstandard elements as well.

