
1 Where A and B are models of the language of arithmetic, an isomorphism from A to B is

a bijection f from |A| to |B| with the property that f(0A) =0B, f(x +A y) = f(x) +B f(y), x <A

y iff f(x) <B f(y), and so on. If F is a variable assignment for A, then F satisfies the same

formulas in A that fBF satisfies in B. (Here fBF is the variable assignment for B given by

fBF(v) = f(F(v)).) It follows that the same sentences are true in A and in B.

Nonstandard Models of True Arithmetic

We have talked a lot about the standard model of the language of arithmetic, but there are

other models of true arithmetic (the set of sentences true in the standard model) that aren’t

isomorphic to the standard model. Indeed, consider the theory ' consisting of true arithmetic,

together with all sentences “[n] < c,” where “c” is a new constant. If ) is a finite subset of ',

then we can model of ) by expanding the standard model by letting “c” denote a number larger

than any of the numbers n with “[n] < c” 0 ). It follows by the compactness theorem that there is

a model of '. A model of ' will be a nonstandard model of true arithmetic, that is, a model of

true arithmetic that isn’t isomorphic1 to the standard model. 

An initial segment of a nonstandard model A of true arithmetic is defined just as it is for

the standard model: S f |A| is an initial segment iff, for any y 0 S, any element of |A| that is <A y

is an element of S. The map taking n to [n]A is an isomorphism from the standard models onto an

initial segment of A. The elements of |A| that aren’t in the range of this isomorphism are the

nonstandard elements. To see that the range of the isomorphism is an initial segment, note first

that A can’t hide any nonstandard elements below 0A, because “(œx)¬ x < 0” is part of true

arithmetic. It can’t sneak any nonstandard elements below [n+1]A, because (œx)(x < [n+1] : (x =
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2 That is, a satisfies either “(›y)([2]Cy) = x” or (›y)(([2]Cy) + [1]) = x.”

[0] w x = [1] w ... w x = [n]))” is in true arithmetic. Because we have “(œx)(œy)(x < y w x = y w y

< x),” all the nonstandard elements are greater than all the standard elements. 

Let a be a nonstandard element. Because true arithmetic assures us that every number has

an immediate successor and that every number other than 0 has an immediate predecessor, the

immediate neighborhood of a looks just like the (positive and negative) integers. [2]A CA a is

bigger than all the a +A [n]As, and the immediate neighborhood of [2]A CA a looks just like the

integers. Similarly, [3]A CA a is bigger than all the ([2]A CA a) +A [n]As, and the immediate

neighborhood of [3]A CA a looks just like the integers. a CA a is bigger than all the [n]A CA as, and

the immediate neighborhood of a CA a looks just like the integers.

a satisfies either “x is even” or “x is odd.”2 If the former, then there is a nonstandard

element that when doubled yields a. If the latter, there is a nonstandard element that, when

doubled yields a +A [1]A. Either way, we get a nonstandard number that is approximately one-

half of a. The immediate neighborhood of that nonstandard model looks just like the integers.

Similarly, there is a nonstandard number that is approximately one-third of a, one that is

approximately two-thirds of a, and so on. For any positive integers p and q, there is a

nonstandard number b such that [q]A CA b and [p]A CA a differ by a standard number. In other

words, there is a nonstandard number that is approximately equal to p/q times a.

Just looking at the order, we can say precisely what the countable nonstandard models

look like. There is an initial segment that looks like the natural numbers, followed by a bunch of

copies of the integers. The copies of the integers are ordered; we can say that one copy is less

than another iff the members of the first are <A the members of the second. The order on the
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3 George Boolos and Richard Jeffrey, Computability and Logic, 3rd ed. (New York and

Cambridge: Cambridge University Press, 1989).

copies is isomorphic to the order on the rational numbers. This description characterizes the

order relation on countable, nonstandard models of true arithmetic, uniquely up to isomorphism.

(For uncountable models, the picture is similar, but harder to make precise, since uncountable

nonstandard models aren’t mutually isomorphic.) I won’t go through the proof here, but you

could look it up in Chapter 17 of Boolos and Jeffrey.3

Nonstandard models are troubling, epistemologically. The name “Fido” refers to

something we’ve scratched behind the ears, and the causal connection between our usage of the

word “Fido” and the dog Fido is part of the explanation of how it came to pass that the word

refers as it does. For theoretical terms and other terms that don’t refer to things to which we are

causally connected, there isn’t a direct causal explanation, but there may be an indirect causal

explanation. We have a, probably informal, theory that tells how the theoretical entities are

related to the entities to which we are directly causally connected, and the theoretical terms refer

to whatever entities come the closest to playing the role the theory ascribes to them. (“Comes the

closest to playing the role” rather than “plays the role,” since it would be silly to pretend that our

theories are completely accurate.) The closer the theoretical entity is to the objects of experience,

the more prominent the role that causal connections will play in pinning down reference. When

we get to things that are very far removed from the objects of experience, like numbers, the

causal connections have nearly dropped out of the picture. To be sure, we use numbers to count

everyday objects, but for counting purposes, we use only numbers at the very beginning of the

natural number system, so the way we use those numbers doesn’t go far at all in telling us about
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the structure of the natural numbers as a whole. It is only a slight exaggeration to say that the

meaning of our mathematical terms is given by our mathematical theories.

Now we have a problem. As we shall see in detail later on, our arithmetical theory – the

set of arithmetical sentences we can recognize as true – stops far short of true arithmetic. But

even if we were able to help ourselves to true arithmetic, that isn’t enough to pin down the

meanings of the arithmetical terms. Even if our arithmetical theory were true arithmetic, that

wouldn’t be enough to pin down the structure of the natural numbers, because the theory has

nonstandard models.

An easy response would be to say that our arithmetical theory isn’t isolated. Our beliefs

about natural numbers are embedded in a larger system of beliefs that include our beliefs about

real numbers and our beliefs about sets. We should be looking at the role of arithmetical terms

within that larger theoretical system.

This is an easy response, but not a useful one, since we can apply the same argument to a

larger language that includes the language of set theory and the language of real analysis. The

compactness theorem still applies, so the set of true sentences of the larger language will still

have models with nonstandard natural numbers. We are still left with a deeply disturbing cause

for skepticism about arithmetic.

A different response is that we shouldn’t be formalizing our mathematical theory within

the predicate calculus, but within some more robust logic to which the compactness theorem

does not apply. (The alternative that is usually proposed is the second-order predicate calculus,

which we’ll describe briefly presently.) This response is potentially more helpful, but it’s not as

easy. It arouses the suspicion that we have “solved” our problem by Enron-style accounting
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practices. Some ideas that we used to refer to as “mathematical” notions have now been

rechristened “logical” notions, so that what used to be a problem about the foundations of

mathematics is not a problem about the foundations of logic. We’ve relabeled a problem, but we

haven’t solved anything, since the old difficulty about fixing the meanings of mathematical

terms has reemerged as a problem about fixing the meaning of the new logical terms we

introduce when we move beyond the first-order predicate calculus. Or so one suspects. The issue

remains highly controversial, and we’ve no hope of resolving it here.


