
1 The so-called Peano axioms were first formulated by Richard Dedekind. Peano said as

much in a footnote, but somehow “Peano Arithmetic” was the name that stuck.

Peano Arithmetic

Peano Arithmetic1 or PA is the system we get from Robinson’s Arithmetic by adding the

induction axiom schema:

((R(0) v (œx)(R(x) 6 R(sx))) 6 (œx)R(x)).

What this means is that any sentence of the language of arithmetic that you get from the schema

by replacing the schematic letter “R” with a formula, then prefixing universal quantifiers to bind

all the free variables is an axiom of PA. Thus PA consist of the axioms (Q1) through (Q11),

together with infinitely many induction axioms.

The induction axiom schema formalizes a familiar method of reasoning about the natural

numbers. To show that every natural number has the property expressed by the formula we

substitute for “R,” we begin by showing that 0 has the property; this is the base case. Next we

derive, by conditional proof, the conditional 

(œx)(R(x) 6 R(sx));

we assume R(x) as inductive hypothesis, then derive R(sx). The rule of mathematical induction

permits us to infer (œx)R(x).

Virtually all of our ordinary mathematical reasoning about the natural numbers can be

formalized in PA. Indeed, after some initial awkwardness, in which we produce proofs of facts

of elementary arithmetic that we’ve taken for granted since childhood, reasoning in PA is nearly

indistinguishable from ordinary arithmetical thinking. 

I’ll do a couple of these early proofs informally here, just to get an idea of what’s going

on.
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Proposition 1. PA / (œx)(x = 0 w (›y)x = sy).

Proof: Use the following induction axiom:

[[(0 = 0 w (›y)0 = sy) v (œx)((x = 0 w (›y)x = sy) 6 (sx = 0 w (›y)sx = sy))] 

6 (œx)(x = 0 w (›y)x = sy)]

The antecedent is a theorem of pure logic.:

Proposition 2.  PA / (œx)(0 + x) = x.

Proof: Use the following induction axiom:

[[(0 + 0) = 0 v (œx)((0 + x) = x 6 (0 + sx) = sx)] 6 (œx)(0 + x) = x]

The base clause, “(0 + 0) = 0,” follows from (Q3). To get the induction step, assume, as

inductive hypothesis (IH) that (0 + x) = x. We have

(0 + sx) = s(0 + x) [by (Q4)]

             = sx [by IH].:

Proposition 3. PA / (œx)(œy)(sx + y) = s(x + y).

Proof: We use the following induction axiom:

(œx)[[(sx + 0) = s(x + 0) v (œy)((sx + y) = s(x + y) 6 (sx + sy) = s(x + sy))]

6 (œy)(sx + y) = s(x + y)].

The base clause is easy. Two applications of (Q3) yield

(sx + 0) = sx

 = s(x + 0)

To get the induction step, assume, as IH, 

(sx + y) = s(x + y).

We have:
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(sx + sy) = s(sx + y) [by (Q4)]

    = ss(x + y) [by IH]

    = s(x + sy) [by (Q4) again].:

Proposition 4 (Commutative law of addition). PA / (œx)(œy)(x + y) = (y + x).

Proof: We use this induction axiom:

(œx)[[(x + 0) = (0 + x) v (œy)((x + y) = (y + x) 6 (x + sy) = (sy + x))]

6 (œy)(x + y) = (y + x)].

(Q3) gives us “(x + 0) = x,” and Proposition 2 gives us “(0 + x) = x”; these together yield the

base clause, “(x + 0) = (0 + x).” To get the induction step, assume as IH:

(x + y) = (y + x).

We have:

(x + sy) = s(x + y) [by (Q4)]

 = s(y + x) [by IH]

 = (sy + x) [by Proposition 3]:

Proposition 5 (Associative law of addition). PA / (œx)(œy)(œz)((x + y) + z)

= (x + (y + z)).

Proof: Two applications of (Q3) give us the basis clause, “((x + y) + 0) = (x + (y + 0)).” To get

the induction step, assume as IH:

((x + y) + z) = (x + (y + z)).

We have:

((x + y) + sz) = s((x + y) + z) [by (Q4)]

          = s(x + (y + z)) [by IH]
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= (x + s(y + z)) [by (Q4)]

= (x + (y + sz)) [by (Q4)].:

Proposition 6.  PA / (œx)(0Cx) = 0.

Proof: The base clause, “(0C0) = 0,” comes from (Q5). To get the induction, assume as IH:

(0Cx) = 0.

We have:

(0Csx) = ((0Cx) + 0) [by (Q6)]

= (0Cx) [by (Q4)]

= 0 [by IH].:

Proposition 7. PA / (œx)(œy)(sxCy) = ((xCy) + y).

Proof: We derive the base clause as follows:

(sxC0) = 0 [by (Q5)

= (xC0) [by (Q5) again]

= ((xCy) + 0) [by (Q3)].

Assuming, as IH,

(sxCy) = ((xCy) + y),

we compute:

(sxCsy) = ((sxCy) + sx) [by (Q6)]

= (((xCy) + y) + sx) [by IH]

=((xCy) + (y + sx)) [by Proposition 5]

= ((xCy) + s(y + x)) [by (Q4)]

=((xCy) + s(x + y)) [by Proposition 4]
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= ((xCy) + (x + sy)) [by (Q4)]

= (((xCy) + x) +sy) [by Proposition 5]

= ((xCsy) + sy) [by (Q6)].:

Proposition 8 (Commutative Law of Multiplication). PA / (xCy) = (yCx).

Proof: The base clause, “(xC0) = (0Cx),” uses (Q5) and Proposition 6. As inductive hypothesis,

assume:

(xCy) = (yCx).

We compute:

(xCsy) = ((xCy) + x) [by Q6)]

= ((yCx) + x) [by IH]

= (syCx) [by Proposition 7].:

Proposition 9 (Distributive law). PA / (œx)(œy)(œz)(xC(y + z)) = ((xCy) + (xCz)).

Proof: We prove this equivalent formula:

(œy)(œz)(œx)(xC(y + z)) = ((xCy) + (xCz)),

by using this induction axiom:

(œy)(œz)[[(0C(y + z)) = ((0Cy) + (0Cz)) v (œx)((xC(y + z)) = ((xCy) + (xCz)) 6

(sxC(y + z)) = ((sxCy) + (sxCz)))] 6 (œx)(xC(y + z)) = ((xCy) + (xCz))]

To get the base clause, we compute:

(0C(y + z)) = 0 [by Proposition 6]

      = (0 + 0) [by (Q3)]

      = ((0Cy) + (0Cz)) [by Proposition 6 again].

In proving the induction step, we assume the IH:
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(xC(y + z)) = ((xCy) + (xCz)).

Now we calculate:

(sxC(y + z)) = ((xC(y + z)) + (y + z)) [by Proposition 7]

       = (((xCy) + (xCz)) + (y + z)) [by IH]

       = ((xCy) + ((xCz) + (y + z))) [by Proposition 5]

       = ((xCy) + (((xCz) + y) + z)) [by Proposition 5]

       = ((xCy) + ((y + (xCz)) + z)) [by Proposition 4]

       = ((xCy) + (y + ((xCz) + z))) [by Proposition 5]

       = (((xCy) + y) + ((xCz) + z)) [by Proposition 5]

       = ((sxCy) + (sxCz)) [by Proposition 7].:

Proposition 10 (Associative law of multiplication). PA / (œx)(œy)(œz)((xCy)Cz)

= (xC(yCz)).

Proof: The induction axiom we intend to employ is this:

(œx)(œy)[[((xCy)C0) = (xC(yC0)) v (œz)(((xCy)Cz) = (xC(yCz)) 6 ((xCy)Csz) =

(xC(yCsz)))] 6 (œz)((xCy)Cz) = (xC(yCz))].

We get the base clause thus:

((xCy)C0) = 0 [by (Q6)]

   = (xC0) [by (Q6)]

   = (xC(yC0)) [by (Q6)].

To get the induction step, we assume this IH:

((xCy)Cz) = (xC(yCz)).

We compute:
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((xCy)Csz) = (((xCy)Cz) + (xCy)) [by (Q6)]

     = ((xC(yCz)) + (xCy)) [by IH]

     = (xC((yCz) + y)) [by Proposition 9]

     = (xC(yCsz)) [by (Q6)].:

We could keep going like this for a very long time.

The induction axiom schema we have been using is sometimes called the “weak

induction schema,” to distinguish it form the following strong induction schema:

((œx)((œy < x)Sy 6 Sx) 6 (œx)Sx).

In applying this schema, we assume as inductive hypothesis that every number less than x has

the property represented by Sx, then try to show that x has the property. If we succeed, we

conclude that every number has the property. We don’t need to assume the instances of the

strong induction schema as additional axioms, because we can derive them using the regular

induction schema. Specifically, the induction axiom we use is this:

[[(œy < 0)Sy v (œx)((œy < x)Sy 6 (œy < sx)Sy)] 6 (œx)(œy < x)Sy].

The inductive hypothesis, “(œy < 0)Sy,” is a consequence of (Q9). (Q10) tells us that the

induction clause, “(œx)((œy < x)Sy 6 (œy < sx)Sy),” is equivalent to this:

(œx)((œy < x)Sy 6 (œy)((y < x w y = x) 6 Sy)),

which, in turn is equivalent to this:

(œx)((œy < x)Sy 6 ((œy < x)Sy v Sx)),

which is equivalent to 

(œx)((œy <x)Sy 6 Sx).

Thus we have this:
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((œx)((œy < x)Sy 6 Sx) 6 (œx)(œy < x)Sy).

We also have this:

((œx)(œy < x)Sy 6 (œx)Sx),

which we obtain by the following derivation:

1 1. (œx)(œy)(y  < x 6 Sy) PI

1 2. (œy)(y < sa 6 Sy) US, 1

1 3. (a < sa 6 Sa) US, 2

(Q10) 4. (œx)(œy)(x < sy : (x < y w x = y))

(Q10) 5. (œy)(a < sy : (a < y w a = y)) US, 4

(Q10) 6. (a < sa 6 (a < a w a = a)) US, 5

7. a = a IR

(Q10) 8. a < sa TC, 6, 7

1, (Q10) 9. Sa TC, 3, 8

1, (Q10) 10. (œx)Sx UG, 9

(Q10) 11. ((œx)(œy < x)Sy 6 (œx)Sx) CP, 1, 10

Combining results, we obtain:

((œx)((œy < x)Sy 6 Sx) 6 (œx)Sx).

What we’d like to do now is reverse the process, showing how we could, if we had

chosen, have taken the strong induction schema as axiomatic, and derived the weak induction

schema. However, our attempt to do so runs into a glitch. We used weak induction to derive

Proposition 1, the statement that every number is either 0 or a successor. If we replace weak by

strong induction, we can’t derive Proposition 1. Indeed, it’s possible to put together a model of Q
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+ the strong induction schema in which Proposition 1 is false (though we won’t do so here).

What we can show, however, is that Q + Proposition 1 + the strong induction schema entails the

weak induction schema. Thus, what we want to show is this:

 ((R0 v (œx)(Rx 6 Rsx)) 6 (œx)Rx).

Strong induction gives us this:

   ((œx)((œy < x)Ry 6 Rx) 6 (œx)Rx).

So what we need to show is this:

((R0 v (œx)(Rx 6 Rsx)) 6 (œx)((œy < x)Ry 6 Rx)).

Assume

R0

and

(œx)(Rx 6 Rsx)

Take any y. What we want to show is this:

((œy < x)Ry 6 Rx).

If x = 0, this follows immediately from our assumption that R0. So we may assume (using

Proposition 1) that x is a successor; say x = sz. So what we have to show is this:

((œy < sz)Ry 6 Rsz.

We assumed (œx)(Rx 6 Rsx), which gives us this:

(Rz 6 Rsz).

So what we need is this:

((œy < sz)Ry 6 Rz).

In other words,
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2 An isomorphism from a model A to a model B of the language of arithmetic is a bijection

f from |A| to |B| that satisfies the following conditions:

f(0A) = 0B.

f(sA(x)) = sB(f(x)).

f(x +A y) = f(x) +B f(y).

(†) ((œy)(y < sz 6 Ry) 6 Rz).

We have

((œy)(y < sz 6 Ry) 6 (z < sz 6 Rz)).

Since “z < sz” is a consequence of (Q11), (†) follows immediately.

Plug in “¬ Qx” in place of “Sx” in the strong induction schema, and you get a schema

logically equivalent to the following:

((›x)Qx 6 (›x)(Qx v (œy < )¬ Qy)).

This schema is a formalized version of the well-ordering principle: Every nonempty collection

of natural numbers has a least element.

The induction axiom schema is a formalized version of the 

Principle of Mathematical Induction. Any collection that contains 0 and

contains the successor of any natural number it contains contains every

natural number. 

This principle is central to out reasoning about the natural numbers. A reason for this

centrality is singled out in the following:

Theorem (Richard Dedekind). Any two models of Q that both satisfy the

principle of mathematical induction are isomorphic.2
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f(x CA y) = f(x) CB f(y).

f(x EA y) = f(x) EB f(y).

x <A y iff f(x) <B f(y).

If F is a variable assignment for A, then, for any formula N, F satisfies N in A iff fBF

satisfies N in B. (fBF is defined by setting fBF(v) equal to f(F(v)).) It follows that the same

sentences are true in A and in B.

Proof: Let f be the smallest subcollection of |A| × |B| that meets these conditions:

(D1) <0A,0B>  is in the collection.

(D2) If <x,y> is in the collection, so is <sA(x), sB(y)>.

That is, f is the intersection of all subcollections of |A| × |B| that satisfy (D1) and (D2). 

f is a function from |A| to |B|. To see this, note, first, that f pairs 0A with one and only one

element of |B|: <0A, 0B> 0 f by (D1). If y … 0B, f ~ {<0A,y>} satisfies (D1) and (D2), which

implies, since f is smallest, that f ~ {<0A,y>} = f and <0A,y> ó f.

Next, assume that f pairs x with one and only one element y of |B|. Because f satisfies

(D2), the pair <sA(x), sB(y)> is in f. Suppose that z … sB(y). Let g = f ~ {<sA(x),z>}. Because A

satisfies (Q1), sA(x) … 0A, and so g satisfies (D1). To see that g also satisfies (D2), take <a,b> 0 g.

If sA(a) … sA(x), <sA(a), sB(b)> will be in g because it’s in f. If sA(a) = sA(x), then, because A

satisfies (Q2), a = x. Because f pairs x with only one element of |A|, b must be equal to y, and so

sB(b) … z; hence, again, <sA(a), sB(b)> is in g. Thus g satisfies (D1) and (D2). Because f is the

smallest class that satisfies (D1) and (D2), g must be equal to f, which means that <sA(x), z> isn’t

in f. Consequently, f pairs sA(x) with sB(y), and with nothing else. 
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Let C be the set of elements of |A| that are paired by f with exactly one element of |A|. We

see that 0A is in C and that, whenever x is in C, sA(x) is in C. Because A satisfies the principle of

mathematical induction, C must be equal to |A|, which means that f is a function from |A| to |B|.

A similar argument, this time using the fact that B satisfies the principle of mathematical

induction, shows that f is a bijection.

To complete the proof that f is an isomorphism, we have to show several things. We have

to show that f(0A) = 0B; this follows immediately from the way f was defined. For each of the

function signs of the language, we have to show that f respects the operation of the function sign;

for example, we have to show that f(x +A y) = f(x) +B f(y). Finally, we have to show that f

preserves the “<” relation, that is, that x <A y iff f(x) <B f(y). Of these, we’ll only write out the

proofs for “s” and “+” here.

(D1) tells us that, if <x,y> 0 f, <sA(x), sB(y)> 0 f. Consequently, for x 0 |A|, since <s,f(x)>

0 f, <sA(x), sB(f(x))> 0 f, that is, f(sA(x)) = sB(f(x)).

To get the clause for “+,” pick x 0 |A||. Let E = {y 0 |A|: f(x +A y) = f(x) +B f(y)}. We

want to show that 0A is in E, and also to show that, if y is in E, so is sA(y). Because A satisfies the

principle of mathematical induction, this will suffice to show that every member of |A| is in E.

Because A satisfies (Q3), x +A 0A = x. Because B satisfies (Q3), f(x) +B 0B = f(x).

Consequently, f(x +A 0A) = f(x) = f(x) +B 0B = f(x) +B f(0A), and 0A is in E.

Suppose that y is in E. We compute

f(x +A sA(y)) = f(sA(x +A y)) [because A satisfies (Q4)]

        = sB(f(x +A y)) [because f respects “s”]

        = sB(f(x) +B f(y)) [because y 0 E]
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3 To put the matter a little more precisely, let A be a model of the language of arithmetic.

Extend the language of arithemetic by adding a new constant to serve as a standard name

of each element of the universe of A. If A satisfies all the induction axioms, we are

assured that the priniciple of mathematical induction holds for every subcollection of |A| t

hat is the extension of some predicate of the extended language. The slogan is that the

priniciple holds for collections that are named by some “predicate with parameters” in A.

        = f(x) +B sB(f(y)) [because A satisfies (Q4)]

        = f(x) +B f(sA(y)) [because f respects “s”].

Therefore, sA(y) is in E.:

Now we have a puzzle. Dedekind’s theorem tells us that any model of Q that satisfies the

principle of mathematical induction is isomorphic to the standard model. In particular, since true

arithmetic includes Q and it also includes all the instances of the induction axiom schema, all

models of true arithmetic ought to be isomorphic to the standard model. But they aren’t. The

Compactness Theorem tells us that there are nonstandard models of true arithmetic, that is,

models of true arithmetic that aren’t isomorphic to the standard model.

The solution to this puzzle is to realize that the induction axiom schema doesn’t fully

succeed in expressing the content of the principle of mathematical induction. What the induction

axiom schema tells us is that the principle of mathematical induction is satisfied by every

collection that is named by some predicate of the language.3 There’s no way the schema could

tell us about collections that aren’t named by predicates of the language. The collections that

appear in the proof of Dedekind’s theorem – the domain of the function f, and so on – aren’t

named by predicates of the language.
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4 We are allowing second-order variables to take the place of unary predicates. We could

also, if we wanted, allow second-order variables that take the place of predicates of more

than one arguments. As far as what what we’re doing here goes, this wouldn’t make any

difference.

To realize the full strength of the principle of mathematical induction, we have to go

beyond the familiar language of arithmetic to the language of second-order arithmetic. In

addition to the familiar symbols of the language of arithmetic, this new language includes the

second-order variables, “X0,” “X1,” “X2,” “X3,” and so on.4 The definition of “formula” is

changed in two ways: For any term J, XmJ is an atomic formula. Also, if N is a formula, so are

(›Xm)N and (œXm)N. The distinction of “free” and “bound” occurrences of second-order

variables, and the distinction between sentences and other formulas, works exactly the way it did

for the first-order language. 

The definition of “model” is unchanged, but there are small changes in the semantics. A

variable assignment for a model A assigns an element of |A| to each ordinary variable (or each

individual variable, as they’re called in this context), and it assigns a subset of |A| to each

second-order variable. F satisfies XmJ iff the individual J denotes with respect to F is an element

of F(Xm).  An Xm-variant of a variable assignment F agrees with F except perhaps in what it

assigns to Xm. F satisfies (›Xm)N in A iff some Xm-variant of F satisfies N in A. F satisfies

(œXm)N in A iff every Xm-variant of F satisfies N in A. 

Second-order PA consists of axioms (Q1) through (Q11), together with the following

second-order induction axiom:

(œX0)((X00 v (œy)(X0y 6 X0sy)) 6 (œy)X0y).
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Thus we can write down second-order PA as a single sentence of the second-order language of

arithmetic.

Because the second-order variables range over all subcollections of the universe of

discourse, not just those subcollections that happen to be named by some formula or other, the

second-order induction axiom expresses the full strength of the principle of mathematical

induction. Dedekind’s theorem amounts to the following:

Corollary. Second-order PA is categorical; that is, any two models of the

theory are isomorphic.


