Electrical Ship Demand Modeling for Future Generation Warships
by
Bartholomew J. Sievenpiper

Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer

and

Master of Science in Mechanical Engineering

Abstract

The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods of calculating the average demand power. Using several modern sources of information for the DDG-51 class ship, this thesis investigates the utility of current analysis techniques and examines possible improvements. This thesis expands upon a basic method of modeling and simulation to develop a design tool that would provide an improved method of predicting ship electrical loads with increased fidelity of the ship's electrical demand. These efforts ultimately allow a better understanding of ship behavior to enable decision making in all stages of Navy ship design.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Mechanical Engineering

Thesis Supervisor: Norbert H. Doerry
Title: Technical Director, NAVSEA SEA 05 Technology Office