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AbstractÐThe development or selection of a material to meet given design requirements generally requires
that a compromise be struck between several, usually con¯icting, objectives. The ways in which multi-
objective optimization methods can be adapted to address this problem are explored. It is found that
trade-o� surfaces give a way of visualizing the alternative compromises, and that value functions (or ``uti-
lity'' functions ) identify the part of the surface on which optimal solutions lie. The method is illustrated
with examples. # 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Real-life decision-making frequently requires that a
compromise be reached between con¯icting objec-
tives. The compromises required to strike a balance

between wealth and quality of life, between the per-
formance and the cost of a car, or between health
and the pleasure of eating rich foods, are familiar

ones. Similar con¯icts arise in the choice of ma-
terials. The objective in choosing a material is to
optimize a number of metrics of performance in the

product in which it is used. Common among these
metrics are cost, mass, volume, power-to-weight
ratio, and energy density, but there are many more.
Con¯ict arises because the choice that optimizes

one metric will not, in general, do the same for the
others; then the best choice is a compromise, opti-
mizing none but pushing all as close to their optima

as their interdependence allows. This paper is con-
cerned with multi-objective optimization of material
choice. It draws on established methods for multi-

objective optimization [1±5] and for material selec-
tion [6] illustrating how the ®rst can be applied to
the second. The methods are equally applicable to
material selection and to material design.

2. OPTIMIZED MATERIALS SELECTION

2.1. Performance metrics, control variables and
objective functions

Any engineering component has one or more

functions: to support a load, to contain a pressure,
to transmit heat, and so forth. In designing the
component, the designer has an objective: to make

it as cheap as possible, perhaps, or as light, or as
safe, or some combination of these. This must be
achieved subject to constraints: that certain dimen-

sions are ®xed, that the component must carry the
given load or pressure without failure, that it can
function in a certain range of temperature, and in a
given environment, and many more. Function,

objectives and constraints (Table 1) de®ne the
boundary conditions for selecting a material andÐ
in the case of load-bearing componentsÐa shape

for its cross-section [6].
The performance of the component, measured by

performance metrics, Pj, depends on control vari-

ables, xi. The control variables include the dimen-
sions of the component, the mechanical, thermal
and electrical loads it must carry, and the properties

of the material from which it is made. Performance
is described in terms of the control variables by one
or more objective functions. An objective function is
an equation describing a performance metric, P,

expressed such that performance is inversely related
to its value, requiring that minimum be sought for
P. Thus
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Pj � fj��Loads, F �, �Geometry, G �, �Material,M ��
�1�

or

Pj � fj�F, G,M �

where ``f'' means ``a function of''. Optimum design

is the selection of the material and geometry which
minimizes a given performance metric, P. Multi-
objective optimization is a procedure for simul-
taneously optimizing several interdependent per-

formance metrics P1, P2, . . . , Pj:

2.2. Single objective optimization and material choice

The mode of loading that most commonly domi-
nates in engineering is not tension, but bending.

Consider, as an example, the performance metric
for a sti� panel of length `, width b and thickness t
(Fig. 1), with the objective of minimizing its mass.

The objective is to minimize the mass m of the
panel, described by

m � `btr �2�

where r is the density of the material of which it is
made. The length `, width b and force F per unit
width are speci®ed; the thickness t is free. We can

reduce the mass by reducing t, but only so far,
because the panel must meet the constraint on its
sti�ness S, meaning that it must not de¯ect more
than d under a load Fb. To achieve this we require

that

S � Fb

d
� C1EI

`3
rS � �3�

where S� is the desired sti�ness, E is Young's mod-
ulus, C1 is a constant which depends on the distri-
bution of load and I is the second moment of the

area of the section, which, for a panel of section

b� t is

I � bt3

12
: �4�

Using equations (3) and (4) to eliminate t in

equation (2) gives the objective function for the per-
formance metric m:

mr
�
12S �b2

C1

�1=3

`2
�

r
E 1=3

�
: �5�

All the quantities in equation (5) are speci®ed by
the design except for the group of material proper-

ties in the last parentheses, r=E 1=3: The values of
the performance metric for competing materials
therefore scale with this term, which is called a ma-

terials index. Taking material M0 as the reference
(the incumbent in an established design, or a con-
venient standard in a new one), the performance
metric of a competing material M1 di�ers from that

of M0 by the factor

m1

m0
� �r1=E

1=3
1 �

�r0=E1=3
0 �

�6�

where the subscript ``0'' refers to M0 and the ``1'' to
M1. If the constraint were that of strength rather

than sti�ness, the constraining equation becomes
that for failure load, Ff per unit width, meaning the
onset of yielding:

Ff � 2C2
Isy

bt`
rF�f

where C2, like C1, is a constant that depends only
on the distribution of the load. The objective func-
tion becomes

mr
�
6F�f b

2

C2

�1=2

`3=2
� r

s1=2y

�
�7�

where sy is the yield strength of the material of

which the panel is made and F�f b is the desired
minimum failure load. Here the materials index is
r=s1=2y : Taking material M0 as the reference again,

the performance metric of a competing material M1

di�ers from that of M0 by the factor

m1

m0
� �r1=s

1=2
y,1 �

�r0=s1=2y,0 �
: �8�

More generally, if the performance metrics for a

reference material M0 are known, those for compet-
ing materials are found by scaling those of M0 by
the ratio of their material indices. There are many

such indices. A few of those that appear most com-
monly are listed in Table 2.
Selection of a material to optimize a single objec-

tive is simply a case of identifying the index charac-

Table 1. Function, objectives and constraints

Function ``What does the component do?''
Objective ``What is to be maximized or minimized?''
Constraintsa ``What non-negotiable conditions must be met?''

``What negotiable but desirable conditions . . . ?''

a It is sometimes useful to distinguish between ``hard'' and
``soft'' constraints. Sti�ness and strength might be absolute
requirements (hard constraints); cost might be negotiable (a soft
constraint).

Fig. 1. A panel of length `, width b and thickness t,
loaded in bending by a force F per unit width.

360 ASHBY: OPTIMIZATION IN MATERIAL DESIGN



terizing the performance metric, and choosing ma-

terials with the smallest value of this index.

2.3. Multi-objective optimization and trade-o�
surfaces

When there are two or more objectives, solutions

rarely exist that optimize all at once. The objectives
are normally non-commensurate, meaning that they
are measured in di�erent units, and in con¯ict,

meaning that any improvement in one is at the loss
of another. The situation is illustrated for two
objectives by Fig. 2 in which one performance

metric, P2, is plotted against another, P1. Each
bubble describes a solution. The solutions that
minimize P1 do not minimize P2, and vice versa.
Some solutions, such as that at A, are far from op-

timal: other solutions exist which have lower values
of both P1 and P2. Solutions like A are said to be

dominated by others. Solutions like that at B have

the characteristic that no other solution exists with
lower values of both P1 and P2. These are said to
be non-dominated solutions. The line or surface on

which they lie is called the non-dominated or opti-
mum trade-o� surface [2]. The values of P1 and P2

corresponding to the non-dominated set of sol-

utions are called the Pareto set [2, 7].
The trade-o� surface identi®es the subset of sol-

utions that o�er the best compromise between the
objectives, but it does not distinguish between

them. Three strategies are available to deal with
this.

1. The trade-o� surface like that of Fig. 2 is estab-

lished and studied, using intuition to select
between non-dominated solutions.

2. All but one of the objectives are re-formulated as

constraints by setting lower and upper limits for
them, thereby allowing the solution which mini-

Table 2. Material indicesa (the ``materials'' part of a performance equation)

Function, objective and constraint (and example ) Indexb

Tie, minimum weight, sti�ness prescribed r/E
(cable support of a light-weight tensile structure )
Beam, minimum weight, sti�ness prescribed r/E 1/2

(aircraft wing spar, golf club shaft )
Beam, minimum weight, strength prescribed r=s2=3y

(suspension arm of automobile )
Panel, minimum weight, sti�ness prescribed r=E 1=3

(automobile door panel )
Panel, minimum weight, strength prescribed r=s1=2y

(table top )
Column, minimum weight, buckling load prescribed r=E 1=2

( push-rod of aircraft hydraulic system )
Spring, minimum weight for given energy storage Er=s2y
(return springs in space applications )
Precision device, minimum distortion, temperature gradients prescribed a=l
( gyroscopes; hard-disk drives; precision measurement systems )
Heat sinks, maximum thermal ¯ux, thermal expansion prescribed a=l
(heat sinks for electronic systems )
Electromagnet, maximum ®eld, temperature rise and strength prescribed 1=kCpr
(ultra high ®eld magnets; very high speed electric motors )

a The derivation of these and many other indices can be found in Ref. [6].
b r � density; E � Young0s modulus; sy � elastic limit; l � thermal conductivity; a � thermal expansion coe�cient; k � electrical conduc-

tivity; Cp � specific heat.

Fig. 2. Dominated and non-dominated solutions, and the
optimum trade-o� surface.

Fig. 3. Imposing limits on all but one of the performance
metrics allows the optimization of the remaining one, but
this defeats the purpose of multi-objective optimization.
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mizes the remaining objective read o�, as illus-
trated in Fig. 3.

3. A composite objective function or value function,
V, is formulated; the solution with the minimum

value of V is the overall optimum, as in Fig. 4.
This is explored next.

2.4. Value functions

De®ne the value function{

V � a1P1 � a2P2 � . . . � aiPi . . . �9�

where the values of a are exchange constants: they
relate the performance metrics P1, P2, . . .to value,
V, which is measured in units of currency ($, £,

DM, FF, etc.). The exchange constants are de®ned
by

a1 �
�
@V

@P1

�
P2, ... , Pi , ...

�10a�

a2 �
�
@V

@P2

�
P1, ... , Pi , ...

�10b�

that is, they measure the change in value for a unit
change in a given performance metric, all others

held constant. If the performance metric P1 is mass
m (to be minimized), a1 is the change in value V as-
sociated with unit increase in m. If the performance

metric P2 is heat transfer Q per unit area, a2 is the
change in value V associated with unit increase in
Q. The best solution is the one with the smallest
value of V, which, with properly chosen values of

a1 and a2, now correctly balances the con¯icting
objectives.
With given values of V and exchange constants

ai, equation (9) de®nes a relationship between the

performance metrics, Pi. In two dimensions, this
plots as a family of parallel lines, as shown in Fig.
4. The slope of the lines is ®xed by the ratio of the

exchange constants, a1/a2. The best solution is that
at the point at which a value-line is tangent to the
trade-o� surface because it is the one with the smal-

lest value of V.

2.5. Minimizing cost as an objective

Frequently one of the objectives is that of mini-
mizing cost{, C, so that P1 � C: Since we have cho-

sen to measure value in units of currency, unit
change in C gives unit change in V, with the result
that

a1 �
�
@V

@C

�
P2, ... , Pi, ...

� 1 �10c�

and equation (9) becomes

V � C� a2P2 � . . . � aiPi . . . : �11�

As a simple example, consider the substitution of

a new material, M, for an incumbent, M0, based on
cost C and one other performance metric, P.
Substitution is potentially possible if the value V of

M is less than that, V0, of the incumbent M0. Thus
substitution becomes a possibility when

Vÿ V0 � �Cÿ C0� � a�Pÿ P0�R0 �12�

or

DV � DC� aDPR0

from which

Fig. 4. A value function V plotted on the trade-o� dia-
gram. The solution with the lowest V is indicated. It lies
at the point at which the value function is tangent to the

optimum trade-o� surface.

Fig. 5. The trade-o� between performance and cost.
Neither material MA nor MB are viable substitutes for M0.
Material MC is a viable substitute because it has a lower

value of DV.

{ For the use of value functions for material selection,

see Refs [6, 8, 9].

{ For background in cost modelling see Refs [10±15].
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DP
DC

Rÿ 1

a
�13�

de®ning a set of potential applications for which M
is a better choice than M0.
To visualize this, think of a plot of the perform-

ance metric, P1, against cost, C, as shown in Fig. 5.
The incumbent M0 is centred at P0, C0; the poten-
tial substitute at P, C. The line through M0 has the

slope de®ned by equation (13), using the equality
sign. Any material which lies on this line, such as
MA, has the same value V as M0; for it, DV is zero.
Materials above, such as MB, despite having a

lower (and thus better) value of P than M0, have a
higher value of V. Materials below the line, such as
MC, have a lower value of V, a necessary condition

for substitution. Remember, however, that while
negative DV is a necessary condition for substi-
tution, it may not be a su�cient one; su�ciency

requires that the di�erence in value DV be large
enough to justify the investment in new technology.
The population of materials on Fig. 5 is small.

When the population is large, the optimum choice
is found by seeking the point at which a line with

the slope given by equation (13) is tangent to the
optimum trade-o� surface, as in Fig. 4.

2.6. Values for the exchange constants, ai

An exchange constant is a measure of the value,

real or perceived, of a performance metric. Its mag-
nitude and sign depend on the application. Thus
the value of weight saving in a family car is small,

though signi®cant; in aerospace it is much larger.
The value of heat transfer in house insulation is
directly related to the cost of the energy used to
heat the house; that in a heat exchanger for power

electronics can be much higher. The value of per-
formance can be real, meaning that it measures a
true saving of cost, energy, materials, time or infor-

mation. But value can, sometimes, be perceived,
meaning that the consumer, in¯uenced by scarcity,
advertising or fashion, will pay more or less than

the true value of these metrics.
In many engineering applications the exchange

constants can be derived approximately from tech-

nical models. Thus the value of weight saving in
transport systems is derived from the value of the

Table 3. Exchange constants a for transport systems

Sector: transport systems Basis of estimate Exchange constant £/kg ($/lb)

Family car, structural fuel saving 0.5±1.5 (0.4±1.1)
Truck, structural components payload 5±10 (4±8)
Civil aircraft, structural payload 100±500 (75±300)
Military vehicle, structural payload, performance 500±1000 (350±750)
Space vehicle, structural payload 3000±10,000 (2000±75,000)
Bicycle, structural components perceived value (price±mass plots) 80±1000 (50±700)

Fig. 6. A plot of price against mass for bicycles. The lower envelope of the data de®nes a non-domi-
nated or optimal trade-o� line. The exchange constant is approximated by the slope of the line. It is

low for cheap, heavy bikes, but becomes very large for light, expensive ones.

ASHBY: OPTIMIZATION IN MATERIAL DESIGN 363



fuel saved or that of the increased payload which

this allows (Table 3). The value of heat transfer can

be derived from the value of the energy transmitted
or saved by unit change in the heat ¯ux per unit

area. Approximate exchange constants can some-

times be derived from historical pricing data; thus

the value of weight saving in bicycles can be found
by plotting the price{ P of bicycles against their

mass m, using the slope �ÿdP=dm� as an approxi-

mate measure of a (Fig. 6). Finally, exchange con-

stants can be found by interviewing techniques [16,
17] that elicit the value to the consumer of a change

in one performance metric, all others held constant.

The values of a in Table 3 describe simple trade-

o�s between cost and performance. Circumstances

can change these, sometimes dramatically. The
auto-maker whose vehicles fail to meet legislated

requirements for ¯eet fuel consumption will assign

a higher value to weight saving than that shown in

Table 3; so, too, will the aero-engine maker who
has contracted to sell an engine with a given power-

to-weight ratio if the engine is overweight. These

special cases are not uncommon, and can provide

the ®rst market opportunity for a new material.

3. APPLICATIONS

3.1. Simple trade-o� between properties

Consider selection of a material for a design in
which it is desired, for reasons of vibration control,

to maximize the speci®c modulus E/r (E is Young's
modulus and r is the density) and the damping,
measured by the loss coe�cient Z. We identify two
performance metrics, P1 and P2, de®ned such that

minima are sought for both:

P1 � r
E

�14a�

and

P2 � 1

Z
: �14b�

Figure 7 shows the trade-o� plot. Each bubble on
the ®gure represents a material; the dimensions of

the bubble show the ranges spanned by these prop-
erty groups. Materials with high values of P1 have
low values of P2, and vice versa, so a compromise

must be sought. The optimum trade-o� surface,
marked, identi®es a subset of materials with good
values of both performance metrics. If high E/r
(low P1) is of predominant importance, then alu-
minium alloys are a good choice; if greater damping
(lower P2) is required, magnesium alloys or cast
irons are a better choice; and if high damping is the

Fig. 7. A trade-o� plot for performance metrics P1 � r=E and P2 � 1=Z: The shaded band shows the
optimum trade-o� surface.

{ For any successful product the cost C, the price P and

the value V are related by C < P < V, since if C > P the

product is unpro®table, and if P > V no one will buy it.

Thus P can be viewed as a lower limit for V.
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over-riding concern, tin or lead alloys become

attractive candidates. It is sometimes possible to use
judgement to identify the best position on the
trade-o� surface (strategy 1, above). Alternatively

(strategy 2) a limit can be set for one metric, allow-
ing an optimum for the other to be read o�. Setting
a limit of Z > 0:1, meaning P2R10, immediately

identi®es commercial lead alloys as the best choice
in Fig. 7. Finally (strategy 3) it is possible to de®ne
the value function

V � a1P1 � a2P2 � a1
r
E
� a2

1

Z
�15�

and to seek materials which minimize V. Contours

of constant V, like those of Fig. 4, have slope

�
@P2

@P1

�
V

� ÿa1
a2
: �16�

The point at which one contour is tangent to the
trade-o� surface identi®es the best choice of ma-
terial. Implementation of this strategy requires

values for the ratio a1/a2 which measures the rela-
tive importance of sti�ness and damping in suppres-
sing vibration. Technical modelling can permit this
to be evaluated: one example is given in Ref. [18].

3.2. Co-minimizing mass and cost

One of the commonest trade-o�s is that between
mass and cost. Consider, as an example, co-mini-
mizing the mass and cost of the panel of speci®ed

sti�ness analysed in Section 2.2. The mass of the
panel is given by equation (5) that we rearrange to
de®ne the performance metric P1

P1 � m

b
�
�

r
E 1=3

�
�17�

with b, a constant for a given design, given by

b �
�
12S �b2

C1

�1=3

`2: �18�

The cost C of the beam is simply the material cost
per kg, Cm, times the mass m, giving the second
performance metric P2:

P2 � C

b
�
�
Cmr
E 1=3

�
: �19�

Figure 8 shows the trade-o� plot. The horizontal
axis P1 is simply the material index r/E 1/3. The ver-

tical axis, similarly, is the index Cmr/E
1/3.

Conventional alloys (cast irons, steels, aluminium
alloys) lie in the lower part of the diagram.
Beryllium alloys, CFRPs and Al-based MMCs lie

Fig. 8. The performance metrics (measured by the material indices) for cost and mass of a panel of
speci®ed sti�ness, plotted against each other. The trade-o� front (shaded) separates the populated sec-

tion of the ®gure from that which is unpopulated.
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in the central and upper parts. Figure 9 shows the

corresponding plot when the constraint on sti�ness
is replaced by that on strength. Proceeding as
before, but using equation (7) instead of equation

(5), we de®ne the performance metrics:

P1 �
� r

s1=2y

�
�20a�

and

P2 �
 
Cmr

s1=2y

!
: �20b�

As before, both are simple material indices. Cast

irons and steels lie on the optimum trade-o� surface
at low values of P2; GFRPs and CFRPs also lie on
the surface, but at low values of P1.
In Figs 8 and 9, the materials that perform well

by both criteria lie on or near the optimal trade-o�
front, indicated by the shaded band. The front
characterizes the best achievable compromise for a

panel of speci®ed sti�ness (Fig. 8) or strength (Fig.

9) with minimum weight and cost. But at which
part of the front should the choice be made?
To answer this question for the panel of speci®ed

sti�ness we de®ne the value function

V � a1P1 � a2P2 � a1

�
r

E 1=3

�
�
�
Cm

r
E 1=3

�
�21�

(since a2, relating value to cost, is unity). Values of

a2 relating value to mass, are listed in Table 3. The
equation is evaluated in Table 4 for two extreme
values of a1. When a1 has the low value of £0.5/kg,
nodular cast irons are the best choice. But if a1 is

as high as £500/kg, SR-200 grade beryllium is a bet-
ter choice than any of the other materials.
For the panel of speci®ed strength of Fig. 9 the

value function becomes

V � a1
� r

s1=2y

�
�
�
Cm

r

s1=2y

�
, �22�

Fig. 9. The performance metrics (measured by the material indices) for cost and mass of a panel of
speci®ed strength, plotted against each other. The trade-o� front separates the populated section of the

®gure from that which is unpopulated.

Table 4. The selection of panel materials: sti�ness constraint

Material r (Mg/m3) E (GPa) Cm (£/kg) P1 P2 V �a1=£0.5/kg) V �a1=£500/kg)

Cast iron, nodular 7.30 175 0.25 1.31 0.33 0.99 655.0
Low-alloy steel (4340) 7.85 210 0.45 1.32 0.59 1.25 660.6
Al 6061±T6 2.85 70 0.95 0.69 0.66 1.01 345.6
Al-6061±20% SiC, PM 2.77 102 25 0.59 14.8 15.1 309.8
Ti-6-4 B265 grade 5 4.43 115 20 0.91 18.2 18.7 473.2
Beryllium grade SR-200 1.84 305 250 0.27 67.5 67.6 202.5
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evaluated in Table 5. Here low-alloy steels are the
best choice when a1 is low; B265 grade 5 titanium
alloys, when a1 is high. The same information can
be displayed graphically by plotting contours of V

on Figs 8 and 9; the point at which a contour is
tangent to the optimum trade-o� surface identi®es
the best choice. But when the value function com-

bines more than two metrics of performance as in
equation (9), graphical methods cease to be useful
and ranking by V, as in Tables 4 and 5, becomes

the best approach.

3.3. Cost e�ective materials to minimize thermal
distortion in precision devices

Precision devices, by which we mean precision
machine tools, hard-disk drives, guidance gyro-
scopes and the like, present special problems of ma-

terials selection. The accuracy of such devices is
frequently limited by the dimensional changes
caused by temperature gradients. Compensation for

thermal expansion is of course possible provided
the device is at a uniform temperature. Thermal
gradients are the real problem: they cause change of

shapeÐthat is distortionÐfor which compensation
is not possible [18, 19]. What then are good ma-
terials for cost-e�ective precision devices?
Figure 10 shows, schematically, the simplest of

such devices: a hand-held micrometer. It consists of
a force loop (the frame), an actuator (the threaded
drive) and a sensor (the verneer)Ðall precision

instruments have these features. We aim to choose
a material for the force loop, balancing cost against
performance. For a force loop of ®xed dimensions

the volume is constant and the material cost is

equal to

P1 � Cmrv �23�

where Cm is the cost per kg of the material in the
shape of the force loop, r is its density and v is the

volume of the material in the force loop. The force
loop will, in general, support heat sources: the ®n-
gers of an operator of the device in Fig. 10, or

more usually, electrical components which generate
heat. Susceptibility to thermal distortion is assessed
by considering the simple case of one-dimensional

heat ¯ow through a panel with one side at tempera-
ture T and the other, connected to the heat source,
at T� DT: In the steady state, Fourier's law relates
the heat ¯ux q to the temperature gradient dT/dx:

q � ÿldT

dx
�24�

where l is the thermal conductivity. The strain is re-
lated to temperature by

e � aTDT �25�

where aT is the thermal expansion coe�cient and
T0 is ambient temperature. The distortion is pro-
portional to the gradient of the strain, and we use
this as the performance metric:

P2 � de
dx
� aT

dT

dx
�
�
aT

l

�
q: �26�

Thus for a given geometry and heat ¯ow q, the dis-
tortion de/dx is minimized by selecting materials
with the smallest values of the property group aT/l.
Assume, reasonably, that the material substi-

tution for the frame involves no change of shape,
thus minimizing other design changes. Then the
cost is that of the material and its processing to

shape. De®ne the value function

V � a1P1 � a2P2 � Cmrv� a2q
�
aT

l

�
setting a1 � 1 as before. Dividing by v gives

V

v
� �Cmr� � a2q

�
aT

l

�
: �27�

Figure 11 shows the trade-o� between the two
parenthetical groups of material properties.
Rearranging this equation gives a linear relationship

Table 5. The selection of panel materials: strength constraint

Material r (Mg/m3) sy (MPa) Cm (£/kg) P2 P1 V �a1=£0.5/kg) V �a1=£500/kg)

Cast iron, nodular 7.30 240 0.25 0.47 0.12 0.36 235.1
Low-alloy steel (4340) 7.85 1400 0.45 0.21 0.09 0:20 105.1
Al 6061±T6 2.85 270 0.95 0.17 0.16 0.25 85.2
Al-6061±20% SiC, PM 2.77 410 25 0.14 3.50 3.57 73.5
Ti-6-4 B265 grade 5 4.43 1020 20 0.14 2.80 2.87 72:8
Beryllium grade SR-200 1.84 350 250 0.10 25.0 25.1 75.0

Fig. 10. A hand-held micrometerÐthe simplest example of
a precision measuring device.
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between the property groups (aT/l ) and (Cmr )�
aT

l

�
� ÿ v

a2q
�Cmr� � 1

a2q
V: �28�

This equation describes a family of lines of slope
ÿv=a2q on Fig. 11, each line corresponding to a
value of V (as in Fig. 4). Thus large devices such as
machine tools (v large) in which some distortion

can be tolerated (a2 small) lead to lines with a
steep, negative slope; the tangent to the trade-o�
surface occurs at cast irons, magnesium or alu-

minium alloys. Small, distortion-sensitive, devices
are characterized by a small negative slope; then the
best choice is copper or one of the copper-based

composites identi®ed on the ®gure.

4. CONCLUSIONS

The property pro®les of engineering materials are
very diverse. Optimum selection requires that the
best match be found between the available pro®les

and the requirements of the design. Methods exist
for achieving this when the design has a single
objective. But it is rare that a design has a single

objective; almost always there are several, and opti-
mized selection requires that a balance be struck
between them.
This paper reviews methods of dealing with opti-

mal selection of discrete entities to meet multiple
objectives, and adapts these methods to the speci®c
case of material selection. Methods of developing

performance metrics characterizing each objective
are illustrated. Often, the performance metrics can
be reduced to a simple combination of material
properties like r/E 1/3 or aT/l. Trade-o� plots allow

the identi®cation of an optimal trade-o� surface on
which the best choices lie. Value functions combin-
ing the performance metrics in a properly balanced

way contain exchange constants that relate the per-
formance metrics. If values for the exchange con-
stants are known, materials can be ranked by value,

identifying those that o�er the best compromise.
Estimates for the exchange constants can sometimes
be made by modelling, and when this is di�cult it

may still be possible to devise limits between which
they must lie, allowing the selection to proceed.
This method is illustrated by a number of examples.
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Fig. 11. A trade-o� plot for the material groups determining the performance metrics P2 and cost C
showing the trade-o� front. Low values of the exchange constant a2 give high tangent slopes, and vice

versa.
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