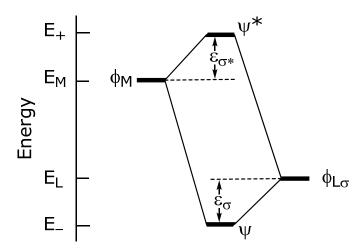
5.03, Inorganic Chemistry Prof. Daniel G. Nocera

Lecture 25 Apr 11: Angular Overlap Method and Electronic Structure of Metal Complexes

The interaction energy resulting from the interaction of the metal and ligands is defined on the following energy level diagram,



where E_M is the energy of the metal orbital, E_L is the energy of the ligand orbital, $\Delta E_{ML} = E_M - E_L$, S_{ML} is the energy of overlap (i.e., the overlap integral) between the ligand and metal orbital and the interaction energies are,

$$\varepsilon_{\sigma} = \frac{E_{M}^{2}S_{ML}^{2}}{\Delta E_{ML}} \qquad \qquad \varepsilon_{\sigma^{*}} = \frac{E_{L}^{2}S_{ML}^{2}}{\Delta E_{ML}}$$

The energies ϵ_{σ} and ϵ_{σ^*} are the molecular orbital (MO) energies—the energies arising from the metal and ligand orbitals. Note that E_M , E_L and ΔE_{ML} in the above expressions are constants, hence, the energy of interaction between metal and ligand scales directly with the overlap integral, S_{ML}

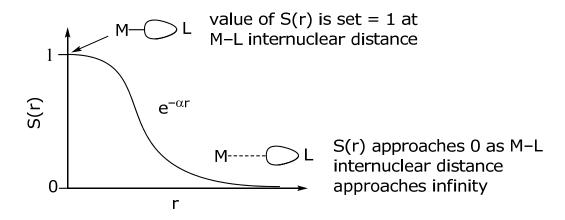
$$\varepsilon_{\sigma} = \frac{\mathsf{E}_{\mathsf{M}}^{\ 2} \mathsf{S}_{\mathsf{ML}}^{\ 2}}{\Delta \mathsf{E}_{\mathsf{ML}}} = \beta' \, \mathsf{S}_{\mathsf{ML}}^{\ 2} \qquad \qquad \varepsilon_{\sigma^*} = \frac{\mathsf{E}_{\mathsf{L}}^{\ 2} \mathsf{S}_{\mathsf{ML}}^{\ 2}}{\Delta \mathsf{E}_{\mathsf{ML}}} = \beta \, \mathsf{S}_{\mathsf{ML}}^{\ 2}$$

where β and β are constants. Thus by determining the overlap integral, S_{ML} , the energies of the MOs may be ascertained relative to the metal and ligand atomic orbitals.

The **Angular Overlap Method** (AOM), provides a measure of S_{ML} and hence MO energy levels. In AOM, the overlap integral is also factored into a radial and angular product,

$$S_{ML} = S(r) F(\theta, \phi)$$

Analyzing S(r) as a function of the M-L internuclear distance,

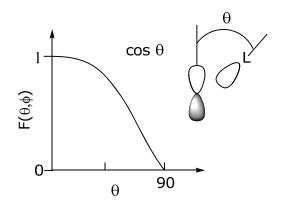


Under the condition of a fixed M-L distance, S(r) is invariant, and therefore the overlap integral, S_{ML} , will depend only on the angular dependence, i.e., on $F(\theta,\phi)$.

Because the σ orbital is symmetric, the angular dependence, $F(\theta,\phi)$, of the overlap integral mirrors the angular dependence of the central orbital.

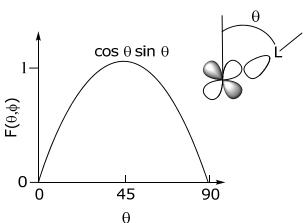
p-orbital

...is defined angularly by a cos θ function. Hence, the angular dependence of a σ orbital as it angularly rotates about a p-orbital reflects the cos θ angular dependence of the p-orbital.

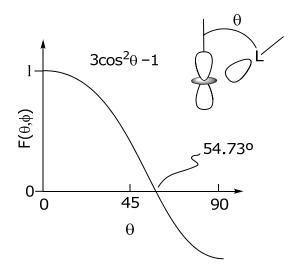


Similarly, the other orbitals take on the angular dependence of the central metal orbital. Hence, for a

d_{yz}-orbital

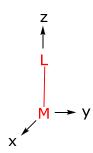


 d_{z^2} -orbital



ML Diatomic Complexes

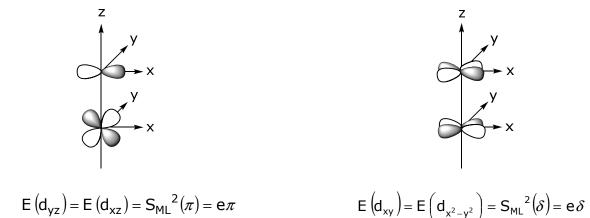
To begin, let's determine the energy of the d-orbitals for a M-L diatomic defined by the following coordinate system,



There are three types of overlap interactions based on σ , π and δ ligand orbital symmetries. For a σ orbital, the interaction is defined as,

The energy for maximum overlap, at $\theta = 0$ (see above) is set equal to 1. This energy is defined as $e\sigma$. The metal orbital bears the antibonding interaction, hence d_{z^2} is destablized by $e\sigma$ (the corresponding L orbital is stabilized by $(\beta')^2 \cdot 1 = e\sigma'$).

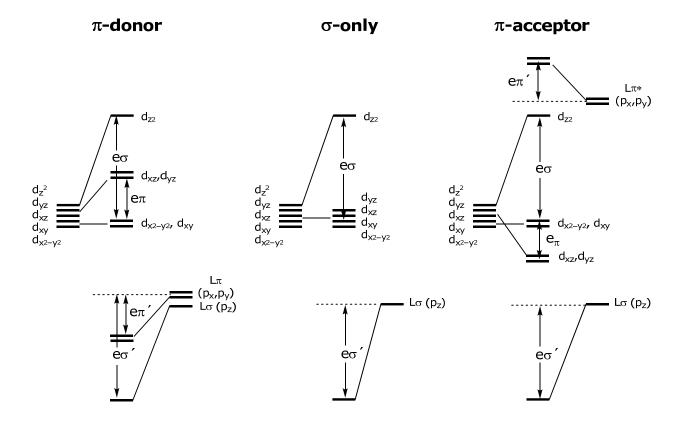
For orbitals of π and δ symmetry, the same holds...maximum overlap is set equal to 1, and the energies are $e\pi$ and $e\delta$, respectively.



As with the σ interaction, the $(M-L\pi)^*$ interaction for the d-orbitals is destabilizing and the metal-based orbital is destablized by $e\pi$, whereas the $L\pi$ ligands are stabilized by $e\pi$. The same case occurs for a ligand possessing a δ orbital, with the only difference being an energy of stabilization of $e\delta$ for the $L\delta$ orbital and the energy of de-stabilization of $e\delta$ for the δ metal-based orbitals.

 $S_{\text{ML}}(\delta)$ is small compared to $S_{\text{ML}}(\pi)$ or $S_{\text{ML}}(\sigma)$. Moreover, there are few ligands with δ orbital symmetry (if they exist, the δ symmetry arises from the $p\pi$ -systems of organic ligands). For these reasons, the $S_{\text{ML}}(\delta)$ overlap integral and associated energy is not included in most AOM treatments.

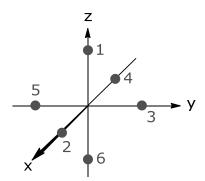
Returning to the problem at hand, the overall energy level diagrams for a M–L diatomic molecule for the three ligand classes are:



ML₆ Octahedral Complexes

Of course, there is more than one ligand in a typical coordination compound. The power of AOM is that the $e\sigma$ and $e\pi$ (and $e\delta$), energies are additive. Thus, the MO energy levels of coordination compounds are determined by simply summing $e\sigma$ and $e\pi$ for each M(d)–L interaction.

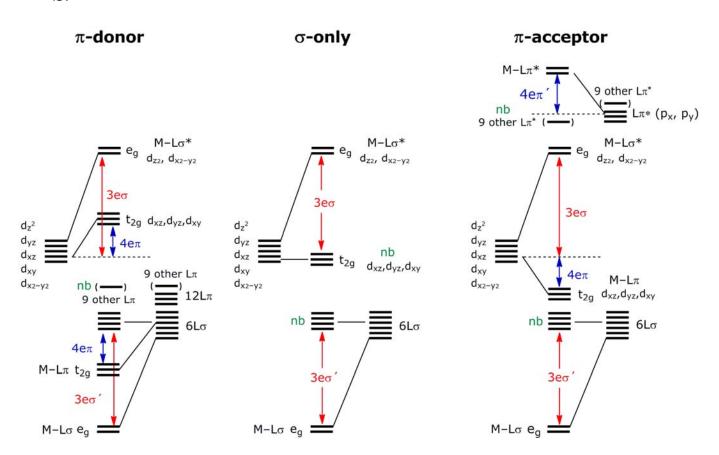
For the ligands in an octahedral complex,



The energy for each of the ligands is collected in the following table. The total energy for a ligand is obtained by summing the total energy of each d-orbital,

	L1	L2	L3	L4	L5	L6	E _{TOTAL}
E(d _{z²})	еσ	$\frac{1}{4}e\sigma + \frac{3}{4}e\delta$	$\frac{1}{4}e\sigma + \frac{3}{4}e\delta$	$\frac{1}{4}e\sigma + \frac{3}{4}e\delta$	$\frac{1}{4}e\sigma + \frac{3}{4}e\delta$	еσ	$= 3e\sigma + 3e\delta$
E(d _{yz})	еπ	еδ	еπ	еδ	еπ	еπ	$= 4e\pi + 2e\delta$
E(d _{xz})	еπ	еπ	еδ	еπ	еδ	еπ	$= 4e\pi + 2e\delta$
E(d _{xy})	еδ	еπ	еπ	еπ	еπ	еδ	$= 4e\pi + 2e\delta$
E(d _{x²-y²})	еδ	$\frac{3}{4}e\sigma + \frac{1}{4}e\delta$	$\frac{3}{4}e\sigma + \frac{1}{4}e\delta$	$\frac{3}{4}e\sigma + \frac{1}{4}e\delta$	$\frac{3}{4}e\sigma + \frac{1}{4}e\delta$	еδ	= 3eσ + 3eδ

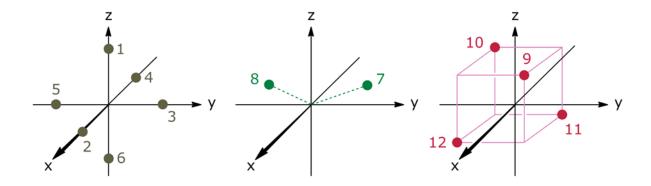
Remember, $e\delta <<$ $e\sigma$ or $e\pi...$ thus $e\delta$ may be ignored. The O_h energy level diagram is:



Note the d-orbital splitting is the same result obtained from the crystal field theory (CFT) model taught in freshman chemistry. In fact the energy parameterization scales directly between CFT and AOM, where Δ_0 is the octahedral crystal field splitting,

$$\Delta_{\rm o} = 3{\rm e}\sigma - 4{\rm e}\pi$$

The AOM angular scaling factors (S_{ML}^2) for ligands in the various positions shown by labels L1-L12 is summarized in the table below.

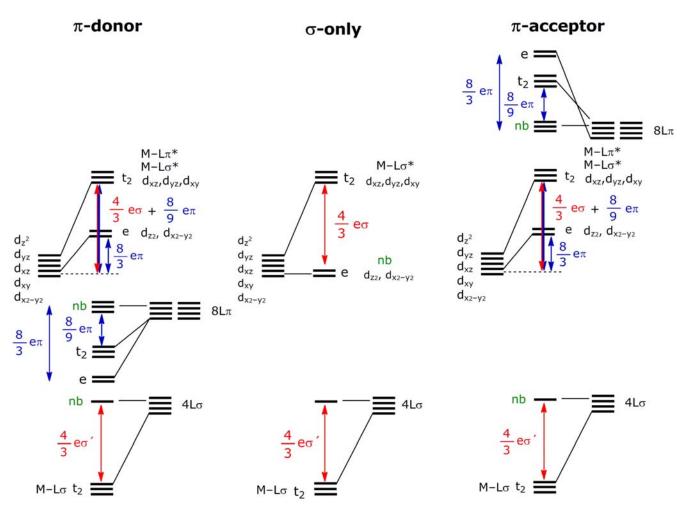


L		z ²	x^2-y^2	ΧZ	yz	ху
1	σ	1	0	0	0	0
	π	0	0	1	1	0
2	σ	1/4	3/4	0	0	0
	π	0	0	1	0	1
3	σ	1/4	3/4	0	0	0
	π	0	0	0	1	1
4	σ	1/4	3/4	0	0	0
	π	0	0	1	0	1
5	σ	1/4	3/4	0	0	0
	π	0	0	0	1	1
6	σ	1	0	0	0	0
	π	0	0	1	1	0
7	σ	1/4	3/16	0	0	9/16
	π	0	3/4	1/4	3/4	1/4
8	σ	1/4	3/16	0	0	9/16
	π	0	3/4	1/4	3/4	1/4
9	σ	0	0	1/3	1/3	1/3
	π	2/3	2/3	2/9	2/9	2/9
10	σ	0	0	1/3	1/3	1/3
	π	2/3	2/3	2/9	2/9	2/9
11	σ	0	0	1/3	1/3	1/3
	π	2/3	2/3	2/9	2/9	2/9
12	σ	0	0	1/3	1/3	1/3
	π	2/3	2/3	2/9	2/9	2/9

You can choose any combination of ligands to construct the ligand fields of common metal complexes.

Structure	Ligands		
Linear	1 and 6		
Trigonal planar	2,7 and 8		
Square planar	2-5		
Tetrahedron	9-12		
Trigonal bipyramid	1,2,7,8 and 6		
Square pyramid	1-5		
Octahedron	1-6		

Let's use the $e\sigma$ and $e\pi$ parameters to determine the crystal field splitting energies for a tetrahedral molecule.



Calculating the tetrahedral crystal field splitting,

$$\Delta_{t} = \left(\frac{4}{3}e\sigma + \frac{8}{9}e\pi\right) - \frac{8}{3}e\pi = \frac{4}{3}e\sigma - \frac{16}{9}e\pi$$

But realize that Δ_t is 4/9 that of Δ_o ,

$$\Delta_{t} = \frac{4}{9} (3e\sigma - 4e\pi) = \frac{4}{9} \Delta_{0}$$

This is the result from 5.111 and 5.112,

$$\Delta_{\mathsf{t}} = -\frac{4}{9}\Delta_{\mathsf{0}}$$

i.e. that the crystal field splitting for a tetrahedral complex is (-4/9) that of an octahedral complex. Note that AOM does not give the sign…but we note that the e and t_2 levels of the tetrahedral ligand field are inverted from that of the octahedral crystal field, hence the (-) sign.