General

Most abundant element of the earth’s surface:
- 23% atmosphere
- 46% lithosphere
- 85% hydrosphere (85.8% oceans, 88.81% pure water)

Prepared on huge scales (100 million tons) by fractional distillation (Air Products, Linde, Praxair, Air Liquide). In the laboratory, usually prepared by decomposition of oxoacids:

\[
\begin{align*}
2\text{KClO}_3 & \xrightarrow{440-500 \degree C} 2\text{KCl} + 3\text{O}_2 \\
2\text{KMnO}_4 & \xrightarrow{215-235 \degree C} \text{K}_2\text{MnO}_4 + \text{MnO}_2 + \text{O}_2
\end{align*}
\]

3 stable isotopes: ^{16}O (99.762%), ^{17}O (0.038%) and ^{18}O (0.200%). ^{17}O has a nuclear spin ($I = 5/2$), so can be used for NMR studies, as well as double resonance EPR techniques.

A Brief History

15th century Leonardo DaVinci notes air has substance to support combustion
1773 Priestley and Scheele discover oxygen, prepared by many different routes
1775 Lavosier recognizes O as an element and in 1777 calls it “oxygen”
1781 Cavendish determines water composed of hydrogen and oxygen
1800 Nicholson and Carlisle electrolytically produce O$_2$ from H$_2$O
1818 Thenard discovers hydrogen peroxide, H$_2$O$_2$
1840 Schönbein discovers ozone, O$_3$
1848 Faraday notes O$_2$ is paramagnetic, Mulliken determines MO in 1928 to explain paramagnetism (see next page)
1877 Oxygen liquefied by Cailletet and Pictet
1881 Oxygen produced industrially for the first time (from BaO)
1896 von Linde produces liquefied O$_2$ on industrial scale
1903 Harries discovers ozonolysis of alkenes
1929 17O and 18O isotopes discovered by Giauque and Johnston
1931 Singlet oxygen discovered by Childe and Mecke
1941 18O tracer studies show that photosynthetic O$_2$ comes from H$_2$O and not CO$_2$
1951 17O detected by NMR by Weaver, Tolbert and LaForce
1963 First reversible oxygen binding with an organometallic complex by Vaska
1974 Rowland and Molina show that CFCs could catalytically destroy ozone
1985 Furman discovers ozone hole over Halley Bay, Antarctica
Electronic Structure

Oxygen is extremely electronegative (3.5) only exceeded by F, and possesses a significant ionization energy (1313.5 kJ mol\(^{-1}\)). Atomic O has an electronic configuration 1s\(^2\)2s\(^2\)2p\(^4\). This gives rise to the diatomic molecular orbital diagram:

\(O_2\) ground state:

\[\sigma_{\text{pz}}^* (\sigma_u) \quad \sigma_{\text{pz}} (\sigma_g) \quad \pi_{2p_{x,y}}^* (\pi_g) \quad \pi_{2p_{x,y}} (\pi_u)\]

\[\sigma_{2s}^* (\sigma_u) \quad \sigma_{2s} (\sigma_g)\]

\(\text{O}_2\) (triplet ground state):

\[\sigma_{\text{pz}}^* (\sigma_u) \quad \sigma_{\text{pz}} (\sigma_g) \quad \pi_{2p_{x,y}}^* (\pi_g) \quad \pi_{2p_{x,y}} (\pi_u)\]

\[\sigma_{2s}^* (\sigma_u) \quad \sigma_{2s} (\sigma_g)\]

There are two low-lying singlet excited states:

\[\text{\textbf{1}} \Sigma_g^- \quad \text{\textbf{1}} \Sigma_g^+\]
Singlet oxygen is very reactive. Kautsky in 1931-9 showed the significance of singlet O₂ in organic reactions, but his science was largely discounted. Only again in 1964, did Foote and Corey re-discover the potent oxidizing ability of singlet O₂, which can readily oxidizes hydrocarbons and a host of other organic substrates:

In the body, singlet O₂ damages tissues by:
- oxidizing membrane lipids
- oxidizing amino acids in proteins
- crosslinks proteins
- damages DNA

and here is where the story of vampires begins...

Uncle Fester
In your body, O_2 is transported and delivered by hemoglobin:

- A tetramer
- $MW = 64,500$
- hemes 25 and 40 Å apart
- binds O_2

The protein is made up of two major structural components:

- Amino acid biopolymer, i.e. peptide
- Heme cofactor (active site where O_2 binds)

Peptide Backbone

Composed of 20 natural amino acids, which polymerize via the following condensation reaction:
The 20 Naturally Occurring Amino Acids

- **Acidic and amide side chains**
 - Aspartate
 - Asparagine
 - Glutamate
 - Glutamine

- **Aromatic side chains**
 - Tryptophan
 - Phenylalanine
 - Tyrosine

- **Basic side chains**
 - Lysine
 - Histidine
 - Arginine

- **Aliphatic side chains**
 - Valine
 - Isoleucine
 - Glycine
 - Alanine
 - Leucine

- **Hydroxyl or sulfur-containing side chains**
 - Serine
 - Methionine
 - Threonine
 - Cysteine

- **Cyclic side chain**
 - Proline
Heme Cofactor

The heme cofactor is a porphyrin. A porphyrin is an aromatic macrocycle that can bind metals in its tetragonal pocket,

When \(M = \text{Fe} \), then the porphyrin is called a heme. There are several important biofunctions of hemes, including: \(\text{O}_2 \) transport (hemoglobin), mitochondrial cellular energy generation (cytochrome \(c \) oxidase), electron transport (cytochrome \(c \)), detoxification reactions (cytochrome P450), peroxidase mediated reactions (peroxidases), biosynthesis of steroids, protein synthesis...to name a few.

Hemoglobin has the substitution pattern as follows:

Hemoglobin is good at binding but also good at releasing \(\text{O}_2 \) to the cell, i.e., the on/off rates are fast. Everybody knows that carbon monoxide is poisonous—it competes for the \(\text{O}_2 \) binding site at heme. Interestingly, \(\text{O}_2 \) is 20x faster at binding hemoglobin than \(\text{CO} \), but \(\text{CO} \) doesn’t come off easily once bound, hence it is a toxin. Oxygen binds the \(\text{Fe}^{2+} \) state of heme and the binding is assisted by an internal electron transfer to temporally produce \(\text{Fe}^{3+} \)-superoxide. Superoxide, \(\text{O}_2^- \) is the one-electron reduced form of \(\text{O}_2 \):

\[
\text{HbFe}^{2+} + \text{O}_2 \rightarrow \text{HbFe}^{3+} - \text{O}_2^-
\]
Electronic Structure of Porphyrins and Hemes

Porphyrin Excited States

Porphyrins are aromatic π-systems. Just like any aromatic (i.e., benzene), the HOMO is of π-symmetry formed from the bonding linear combination of p-orbitals and the LUMO is π^* symmetry formed from the bonding linear combination of p-orbitals. The $p\pi^*$ orbital is relatively rigid, and thus the excited state energy cannot dissipate readily. Thus, the $p\pi^*$ excited states of aromatics are long-lived (nanoseconds to milliseconds) and highly emissive (they give off a photon).

Heme Excited States

Hemes have the $p\pi$ HOMO and $p\pi^*$ LUMO electronic structure too. But they differ in one significant way. The Fe center brings in low-lying dd states. The lowest energy transition in the heme is therefore NOT the emissive and long-lived $p\pi^*$ excited state but rather is a M—L σ^* excited state. Because these states are antibonding along the s axis, the excited state energy is dissipated efficiently by molecular vibrations (this is called non-radiative decay) and the excited state energy is given off as heat. The excited states of hemes are extremely short-lived, on the order of a picosecond.
Energy Transfer

The consequence of the short-lived excited state of heme, and the long-lived-excited state of porphyrin is manifested in energy transfer. Energy transfer is the process where energy from one excited state molecule (donor, D) is transferred to another molecule (acceptor, A) to produce the excited state of that molecule. The energy transfer process in solution is a bimolecular reaction,

\[D \rightarrow_h v D^* \quad \text{(excitation)} \]

\[D^* + A \rightarrow D + A^* \quad \text{(energy transfer)} \]

where \(\frac{d[A^*]}{dt} = -\frac{d[D^*]}{dt} = k[D^*][A] \).

Note that the D* has to be long enough lived to diffuse to A. Thus the excited state must live at least tens of nanoseconds. This is the case for free base porphyrins (i.e., the porphyrin with no metal, just the two protons). However, the hemes are too short-lived (remember, their excited states are picoseconds) to participate in a diffusional process. The excited state energy in a heme is dissipated as heat before it can transfer it to another molecule.

With regard to A, \(^3\text{O}_2\) can accept energy in an energy transfer process to produce its singlet excited state, \(^1\text{O}_2\).

For the case of hemoglobin, however, energy transfer is circumvented owing to the short excited state lifetime (owing to the presence of the low-lying dd states of the Fe center)

\[
\begin{array}{c}
\text{Fe}^{2+} \quad * \quad + \quad ^3\text{O}_2 \quad \rightarrow \quad \boxed{\text{Fe}^{2+} \quad + \quad ^3\text{O}_2} \quad \text{NO ENERGY TRANSFER}
\end{array}
\]

whereas for free base porphyrin (i.e., hemoglobin with no Fe\(^{2+}\) center, only two protons), energy transfer to produce \(^1\text{O}_2\) is energetically a favorable process,

\[
\begin{array}{c}
\boxed{2H} \quad * \quad + \quad ^3\text{O}_2 \quad \rightarrow \quad \boxed{2H} \quad + \quad ^1\text{O}_2 \quad \text{ENERGY TRANSFER}
\end{array}
\]

Thus sunlight shining on hemoglobin (i.e. your blood), does not produce the potent oxidizing agent, \(^1\text{O}_2\). However, if your blood had hemoglobin with missing Fe\(^{2+}\) centers, then \(^1\text{O}_2\) would be produced.
Clinical Genealogy of a Disease Called “Porphyria”

1898 Reports two brothers have solar sensitivity and free base porphyrin in urine

McCall-Anderson, Br. J. Dermatol. 1898, 10, 1

1911 Classifies a disease associated with skin sensitivity to light and names it porphyria

1913 First to synthesize free base porphyrin, and then after making it, injects into himself 200 mg of free base porphyrin. Wraps partly of himself in tape and leaves part of his skin exposed. Notes that skin exposed to light is damaged, and connects the disease of porphyria to free base porphyrin

Heme Biosynthesis

Heme is synthesized in all cells, but most prevalent in liver and bone marrow. The synthesis of heme relies on *eight* enzymes. The next shows the complete biosynthetic pathway.

8 different “porphyrias” associated with missing one of the 8 enzymes. Most typical porphyria is the one arising from the lack of ferrochelatase—the enzyme that places Fe$^{2+}$ into the porphyrin ring (the last step of the biosynthetic pathway).
The Eight Porphyrias

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Location of enzyme</th>
<th>Associated porphyria</th>
<th>Type of porphyria</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ-aminolevulinate (ALA) synthase</td>
<td>mitochondrion</td>
<td>X-linked sideroblastic anemia (XLSA)</td>
<td>erythropoietic</td>
</tr>
<tr>
<td>δ-aminolevulinate (ALA) dehydratase</td>
<td>cytosol</td>
<td>Doss porphyria/ALA dehydratase deficiency</td>
<td>hepatic</td>
</tr>
<tr>
<td>hydroxymethylbilane (HMB) synthase (or PBG deaminase)</td>
<td>cytosol</td>
<td>acute intermittent porphyria (AIP)</td>
<td>hepatic</td>
</tr>
<tr>
<td>uroporphyrinogen (URO) synthase</td>
<td>cytosol</td>
<td>congenital erythropoietic porphyria (CEP)</td>
<td>erythropoietic</td>
</tr>
<tr>
<td>uroporphyrinogen (URO) decarboxylase</td>
<td>cytosol</td>
<td>porphyria cutanea tarda (PCT)</td>
<td>hepatic</td>
</tr>
<tr>
<td>coproporphyrinogen (COPRO) oxidase</td>
<td>mitochondrion</td>
<td>hereditary coproporphyria (HCP)</td>
<td>hepatic</td>
</tr>
<tr>
<td>protoporphyrinogen (PROTO) oxidase</td>
<td>mitochondrion</td>
<td>variegate porphyria (VP)</td>
<td>mixed</td>
</tr>
<tr>
<td>ferrochelatase</td>
<td>mitochondrion</td>
<td>erythropoietic protoporphyria (EPP)</td>
<td>erythropoietic</td>
</tr>
</tbody>
</table>
So now let’s reconsider the **MYTH** … in light of the science of O_2 and porphyrins:

INSANITY and AGGRESIVENESS
Hepatic porphyrias affect nervous system, resulting in mental illness. First diagnosis of porphyria often by a psychiatrist.

TRANSLYVANIA
> 200 genetic variants traced back to Finland, Estonia, Hungary, Bulgaria and you guessed it, **Romania**.

GARLIC
If you have an asthmatic attack, your body goes into overdrive to produce heme. But if you have porphyria, then you make a lot of free base heme, and exacerbate the disease. This attacks triggered by drugs, chemicals, and certain foods. Genetic studies of one of the first lineages goes back to a family line in Romania – brothers. Genetic markers show that they were allergic to garlic.

NIGHT CREATURES
Necrosis of the skin in light. Sunlight penetrates millimeters into the skin. If you have porphyria, then you need to stay out of bright sunlight

DRINKS BLOOD
Hematin and heme arginate are the drugs of choice in acute porphyria...you literally eat iron pill supplements to swamp your system with Fe^{2+} so that it can be delivered into the free base porphyrin. In 17th and 18th century – it was noticed that people got better when they drank cows blood (to get iron).

DO NOT LIKE TO LOOK IN MIRRORS
Necrosis can cause scarring and horrible disfiguration

HAIRY
Increased hair growth on areas such as the forehead – hypertrichosis

RED MOUTHS
Heme precursors may accumulate in the teeth and fingernails, giving them a reddish appearance
FANGS
Lips and gums become so taut that the teeth project. “Canine” teeth (known as the cuspid) become very pronounced.

WHITISH SKIN
Teeth and skin can become fluorescent owing to accumulation of free base porphyrin. The fluorescence from free base porphyrin is a light yellow green color. So your skin looks to take on a whitish tint.

NEVER DIE
Genetically carried disease especially among males – passed from father to sons. Note, people do not go out a lot. So a son grows to look like a father, and so on.