Boranes, Boron: the Amazing Element, and Applications

ACCOUNTS OF CHEMICAL RESEARCH

VOLUME 6

NUMBER 8

AUGUST, 1973

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Three-Center Bonds in Electron-Deficient Compounds. The Localized Molecular Orbital Approach

William N. Lipscomb

Gibbs Chemical Laboratory, Harvard University, Cambridge, Massachusetts 02138 Received December 18, 1972 Having more valence atomic orbitals than valence electrons, electron-deficient compounds present ambiguities in the use of the paired electron bond. Molecular orbitals, at least of stable neutral compounds, are filled usually with a substantial energy gap to the lowest unoccupied excited orbital. However, molecular orbitals based upon the molecular symmetry group are delocalized. Moreover, they are not readily transferable to chemically closely related molecules.

Here, we seek a middle ground: nearly transferable multicenter bonds. We derive localized molecular orbitals (LMO's) objectively from accurate self-consistent field (SCF) molecular orbital (MO) theory. We explore the limits of transferability of these LMO's in the boranes, carboranes, and their related ionic species. Finally, we only begin to ask how these LMO's restrict the compositions, geometries, and reaction pathways in this area of chemistry.

Localized Molecular Orbitals

Recent studies have considerably narrowed the gaps between resonance descriptions of these molecules^{1,2} and molecular orbital results.^{3,4} Extended Hückel theory, developed in this laboratory,^{4,5} has been related^{6,7,8} to rigorously defined SCF theory^{9,10} of complex molecules. Leaving aside the severe limitations of SCF theory when electron correlation¹¹ is important, we note that it yields good approximations to electron density and to properties derived from one-electron operators,^{12–14} like the dipole moment and num shielding constants.

Here, we start with symmetry MO's. Their conversion to localized chemical bonds is achieved by mixing MO's of different symmetries. For example, con-

1

Figure 3. Geometrical and localized valence structure of B_4H_{10} . One terminal hydrogen is omitted from each boron (or, later, carbon) atom. The extra terminal H is indicated by a straight line, and the bridge hydrogen by a curved line.

Figure 4. B₅H₁₁. Structure a, with an open three-center B(2)-B(1)-B(5) bond, is not favored by the localization, which yields central three-center bonds idealized in structure b.

(日) (四) (三) (三) (三)

æ

Figure 5. (a) One of the two localized three-center orbitals in the boron framework of B_5H_{11} . The electron density is obta squaring this function. (b) Hybrids resulting from the localization procedure.

Figure 6. B₆H₁₀, which localizes uniquely.

 $\bigcirc^2\bigcirc$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

3D Aromaticity of Closo Polyhedral Borane Anions

3340

Journal of the American Chemical Society / 100:11 / May 24, 1978 rv tri- Table I. Resonance Energies of Polyhedral Boranes

Such a localized orbital can be imagined to exist in every triangular face of $B_n H_n^{2-}$. In the present approach, the adjacent localized orbitals in the same $B_n H_n^{2-}$ ion are assumed to interact with each other, as in the case of p_{π} orbitals of carbon atoms in an unsaturated hydrocarbon. This assumption leads to a delocalized MO energy scheme of the $B_n H_n^{2-}$ ion. Each MO of $B_n H_n^{2-}$ can hence be expressed as a linear combination of the three-center BBB bonding orbitals. This three-center bond formalism actually leads to the same pattern of MO energy levels as does the LCAO method.¹²

On this basis, the MO calculation can be carried out in a manner entirely analogous to the original Hückel method for treating conjugated hydrocarbons, setting up an $N \times N$ matrix A, where N is the number of triangular faces of a polyhedral borane considered. The *n*th column and *n*th row of the matrix are each put into a 1:1 correspondence with the *n*th face of the polyhedron. Diagonal matrix elements are given the value α (Hückel Coulomb integral), and off-diagonal matrix elements, which correspond to faces with an edge in common, the value β (Hückel resonance integral). All other matrix elements are set equal to zero.

A secular equation of this polyhedral borane is then expressed as

Species	Mole- cular shape	Number of faces	Reso- nance energy (β)	Number of valence struc- tures ^a
B₄H₄	I	4	0.000	1
B5H52-	II	6	0.000	2
$B_6 H_6^{2-}$	III ^b	8	0.844	32
B7H72-	IV¢	10	0.938	20
B ₈ H ₈ ²	Vc	12	0.798	8 ^h
B ₉ H ₉ ²⁻	VId	14	0.813	16
$B_{10}H_{10}^{2-}$	VIIe	16	1.145	72
B11H112-	VIII	18	1.000	16 ^h
B12H122-	IXg	20	1.763	1324

^a Reference 18. ^b R. Schaeffer, D. Johnson, and G. S. Smith. Inorg. Chem., 4, 917 (1965). ^c F. Klanberg, D. R. Eaton, L. J. Guggenberger, and E. L. Muetterties, *ibid.*, 6, 1271 (1967). ^d L. J. Guggenberger, *ibid.*, 7, 2260 (1968). ^e R. D. Dobrott and W. N. Lipscomb, J. Chem. Phys., 37, 1779 (1962). ^f F. Klanberg and E. L. Muetterties, Inorg. Chem., 5, 1955 (1966). ^g J. A. Wunderlich and W. N. Lipscomb, J. Am. Chem. Soc., 82, 4427 (1960). ^k R. N. Camp. I. R. Epstein, and W. N. Lipscomb, unpublished work.

< A >

Massachusetts Institute of Fechnology

5.03

- The stable existence of the neutral and polyhedral boranes helped force a revolution in the way chemists think about covalent bonding
- Additionally, there are diverse areas of application exploiting their remarkable properties
- Icosahedral B₁₂H²⁻₁₂ is water soluble and heat resistant: salts survive temperatures above 810 °C without decomposition
- B₁₂H²⁻₁₂ is arguably the most stable molecule in all of chemistry
- Its chemical inertness leads to very low toxicity in humans and suitability for medical applications

- The stable existence of the neutral and polyhedral boranes helped force a revolution in the way chemists think about covalent bonding
- Additionally, there are diverse areas of application exploiting their remarkable properties
- Icosahedral B₁₂H²⁻₁₂ is water soluble and heat resistant: salts survive temperatures above 810 °C without decomposition
- B₁₂H²⁻₁₂ is arguably the most stable molecule in all of chemistry
- Its chemical inertness leads to very low toxicity in humans and suitability for medical applications

- The stable existence of the neutral and polyhedral boranes helped force a revolution in the way chemists think about covalent bonding
- Additionally, there are diverse areas of application exploiting their remarkable properties
- Icosahedral $B_{12}H_{12}^{2-}$ is water soluble and heat resistant: salts survive temperatures above 810 °C without decomposition
- B₁₂H²⁻₁₂ is arguably the most stable molecule in all of chemistry
- Its chemical inertness leads to very low toxicity in humans and suitability for medical applications

- The stable existence of the neutral and polyhedral boranes helped force a revolution in the way chemists think about covalent bonding
- Additionally, there are diverse areas of application exploiting their remarkable properties
- Icosahedral $B_{12}H_{12}^{2-}$ is water soluble and heat resistant: salts survive temperatures above 810 °C without decomposition
- B₁₂H²⁻₁₂ is arguably the most stable molecule in all of chemistry
- Its chemical inertness leads to very low toxicity in humans and suitability for medical applications

- The stable existence of the neutral and polyhedral boranes helped force a revolution in the way chemists think about covalent bonding
- Additionally, there are diverse areas of application exploiting their remarkable properties
- Icosahedral $B_{12}H_{12}^{2-}$ is water soluble and heat resistant: salts survive temperatures above 810 °C without decomposition
- B₁₂H²⁻₁₂ is arguably the most stable molecule in all of chemistry
- Its chemical inertness leads to very low toxicity in humans and suitability for medical applications

• ¹¹B signals are more intense than those for ¹⁰B due to greater natural abundance

- \circ $^{11}{
 m B}$ has a larger nuclear magnetic moment than $^{10}{
 m B}$
- NMR signal-to-noise increases with increasing nuclear magnetic moment

5.03

- Nuclear spin I in units of $h/2\pi$ of ¹¹B is 3/2 while that of ¹⁰B is 3
- The larger nuclear quadrupole moment of ¹⁰B gives it spectra that are not as sharp as for ¹¹B

- ¹¹B signals are more intense than those for ¹⁰B due to greater natural abundance
- ${\scriptstyle \bullet}\ ^{11}{\rm B}$ has a larger nuclear magnetic moment than $^{10}{\rm B}$
- NMR signal-to-noise increases with increasing nuclear magnetic moment

5.03

- Nuclear spin I in units of $h/2\pi$ of ¹¹B is 3/2 while that of ¹⁰B is 3
- The larger nuclear quadrupole moment of ¹⁰B gives it spectra that are not as sharp as for ¹¹B

- ¹¹B signals are more intense than those for ¹⁰B due to greater natural abundance
- $\bullet~^{11}\text{B}$ has a larger nuclear magnetic moment than ^{10}B
- NMR signal-to-noise increases with increasing nuclear magnetic moment
- Nuclear spin I in units of $h/2\pi$ of ¹¹B is 3/2 while that of ¹⁰B is 3
- The larger nuclear quadrupole moment of ¹⁰B gives it spectra that are not as sharp as for ¹¹B

- ¹¹B signals are more intense than those for ¹⁰B due to greater natural abundance
- $\bullet~^{11}\text{B}$ has a larger nuclear magnetic moment than ^{10}B
- NMR signal-to-noise increases with increasing nuclear magnetic moment
- Nuclear spin I in units of $h/2\pi$ of ¹¹B is 3/2 while that of ¹⁰B is 3
- The larger nuclear quadrupole moment of ¹⁰B gives it spectra that are not as sharp as for ¹¹B

- ¹¹B signals are more intense than those for ¹⁰B due to greater natural abundance
- ${\, \bullet \,}^{11}{\rm B}$ has a larger nuclear magnetic moment than ${}^{10}{\rm B}$
- NMR signal-to-noise increases with increasing nuclear magnetic moment
- Nuclear spin I in units of $h/2\pi$ of ¹¹B is 3/2 while that of ¹⁰B is 3
- $\bullet\,$ The larger nuclear quadrupole moment of $^{10}{\rm B}$ gives it spectra that are not as sharp as for $^{11}{\rm B}\,$

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy
- $E = -\gamma h H \frac{M}{2\pi}$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

◆ 同 ♪ ◆ 三 ♪

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy

•
$$E = -\gamma h H \frac{M}{2\pi}$$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy

•
$$E = -\gamma h H \frac{M}{2\pi}$$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy

•
$$E = -\gamma h H \frac{M}{2\pi}$$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy

•
$$E = -\gamma h H \frac{M}{2\pi}$$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

- In a uniform magnetic field, H, a given nucleus can assume any one of 2I + 1 orientations relative to the applied field
- Each orientation corresponds to an energy

•
$$E = -\gamma h H \frac{M}{2\pi}$$

•
$$M = I, I - 1, I - 2, -I$$

- A proton coupled to a ¹¹B nucleus "sees" four different fields, all equally probable
- The ¹H NMR spectrum of a proton coupled to a ¹¹B nucleus is a quartet with all four peaks of equal intensity

Borohydride Ion $[BH_4]^-$ has T_d Symmetry

Figure 1. 6 MHz ¹¹B nmr spectrum of NaBH₄ in H₂O. Ref. (3) and (13).

5.03 Inorganic Chemistry

Massachusetts Institute of Technology

(4) b Figure 4 (a) 32.1 MHz ¹¹B nmr spectrum of 1-CIB₅H₈. Ref. (22). (b) 32.1 MHz ¹¹B nmr spectrum of 2-CIB₅H₈. Ref. (23).

22

178

12.5

177

(3, 5)

51

179

(1)

Figure 8. 64.2 MHz 11 B nmr spectrum of B₁₀H₁₄ in CS₂ solution. Ref. (4) and (25c).

ssachusetts titute of hnology

Figure 9. ^{11}B nmr spectrum of $B_{10}H_{10}{}^{2-}$ as $(Et_3NH)_2B_{10}H_{10}$ in CH_3CN. Ref. (28b).

Figure 10. ^{11}B nmr spectrum of $\text{B}_{12}\text{H}_{12}\text{}^{2-}$ ion as $(\text{Et}_3\text{NH})_2\text{B}_{12}\text{H}_{12}$ in CH_3CN. Re (32).

Figure 5. 28.8 MHz ¹¹B nmr spectra of $C_2B_5H_7$ in (C_2H_5)₂O using Fourier transform techniques. (*a*) shows B-H coupling; (*b*) is the decoupled spectrum. Ref. (24).

Figure 6. 28.8 MHz ¹¹B nmr spectra of 1-FC₂B₅H₇ in (C_2 H₅)O using Fourier transform techniques. (a) shows B-H coupling; (b) is the proton-decoupled spectrum. Ref. (24).

- Borax was known in antiquity and used to prepare glazes and hard borosilicate glasses
- Impure boron was obtained by H. Davy, 1808, and by J. L. Gay Lussac
- $\bullet\,$ H. Moissan obtained pure boron in 1892 by reduction of $\mathsf{B}_2\mathsf{O}_3$ using Mg
- High purity boron and crystalline phases only obtained in the later 20th century
- The name "Boron" was proposed by Davy to indicate the source of the element and its similarity to carbon, i.e. *bor*(ax + carb)*on*

- Borax was known in antiquity and used to prepare glazes and hard borosilicate glasses
- Impure boron was obtained by H. Davy, 1808, and by J. L. Gay Lussac
- $\bullet\,$ H. Moissan obtained pure boron in 1892 by reduction of $\mathsf{B}_2\mathsf{O}_3$ using Mg
- High purity boron and crystalline phases only obtained in the later 20th century
- The name "Boron" was proposed by Davy to indicate the source of the element and its similarity to carbon, i.e. *bor*(ax + carb)*on*

- Borax was known in antiquity and used to prepare glazes and hard borosilicate glasses
- Impure boron was obtained by H. Davy, 1808, and by J. L. Gay Lussac
- $\bullet\,$ H. Moissan obtained pure boron in 1892 by reduction of $\mathsf{B}_2\mathsf{O}_3$ using Mg
- High purity boron and crystalline phases only obtained in the later 20th century
- The name "Boron" was proposed by Davy to indicate the source of the element and its similarity to carbon, i.e. *bor*(ax + carb)*on*

- Borax was known in antiquity and used to prepare glazes and hard borosilicate glasses
- Impure boron was obtained by H. Davy, 1808, and by J. L. Gay Lussac
- $\bullet\,$ H. Moissan obtained pure boron in 1892 by reduction of B_2O_3 using Mg
- High purity boron and crystalline phases only obtained in the later 20th century
- The name "Boron" was proposed by Davy to indicate the source of the element and its similarity to carbon, i.e. *bor*(ax + carb)*on*

- Borax was known in antiquity and used to prepare glazes and hard borosilicate glasses
- Impure boron was obtained by H. Davy, 1808, and by J. L. Gay Lussac
- $\bullet\,$ H. Moissan obtained pure boron in 1892 by reduction of $\mathsf{B}_2\mathsf{O}_3$ using Mg
- High purity boron and crystalline phases only obtained in the later 20th century
- The name "Boron" was proposed by Davy to indicate the source of the element and its similarity to carbon, i.e. *bor*(ax + carb)*on*

Elemental Boron comes from Borax

• Borax, the mineral, contains the tetraborate ion, $[B_4O_5(OH)_4]^{2-}$

.

• Borax is formulated as Na₂[B₄O₅(OH)₄]·8H₂O

Elemental Boron comes from Borax

• Borax, the mineral, contains the tetraborate ion, $[B_4O_5(OH)_4]^{2-}$

• Borax is formulated as Na₂[B₄O₅(OH)₄]·8H₂O

Elemental Boron comes from Borax

• Borax, the mineral, contains the tetraborate ion, $[B_4O_5(OH)_4]^{2-}$

- ۲
- Borax is formulated as Na₂[B₄O₅(OH)₄]·8H₂O

Elemental Boron

• Boron is comparatively unabundant in the universe

- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Boron is comparatively unabundant in the universe
- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Boron is comparatively unabundant in the universe
- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Boron is comparatively unabundant in the universe
- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Boron is comparatively unabundant in the universe
- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Boron is comparatively unabundant in the universe
- It occurs to the extent of about 9 ppm in crustal rocks, so rather less abundant than lithium (18 ppm), but similar to praseodymium and thorium
- Occurrance is invariably as borate minerals or borosilicates
- Commercially valuable deposits are rare, but can be vast as in California and Turkey
- Structural complexity of borate minerals is surpassed only by silicates
- Metal borides and allotropic modifications of boron also show great complexity and variety

- Structural complexity of boron arises from the way it seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding
- Elements in this situation usually adopt metallic bonding
- Due to its small size and high ionization energy, B engages in covalent bonding
- The dominant structural unit is the B_{12} icosahedron, which also occurs in metal boride structures
- Fivefold rotation symmetry at individual boron atoms gives rise to inefficient packing of B₁₂ icosahedra, giving regularly spaced voids to be occupied by metal or other atoms

- Structural complexity of boron arises from the way it seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding
- Elements in this situation usually adopt metallic bonding
- Due to its small size and high ionization energy, B engages in covalent bonding
- The dominant structural unit is the B_{12} icosahedron, which also occurs in metal boride structures
- Fivefold rotation symmetry at individual boron atoms gives rise to inefficient packing of B₁₂ icosahedra, giving regularly spaced voids to be occupied by metal or other atoms

- Structural complexity of boron arises from the way it seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding
- Elements in this situation usually adopt metallic bonding
- Due to its small size and high ionization energy, B engages in covalent bonding
- The dominant structural unit is the B_{12} icosahedron, which also occurs in metal boride structures
- Fivefold rotation symmetry at individual boron atoms gives rise to inefficient packing of B₁₂ icosahedra, giving regularly spaced voids to be occupied by metal or other atoms

- Structural complexity of boron arises from the way it seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding
- Elements in this situation usually adopt metallic bonding
- Due to its small size and high ionization energy, B engages in covalent bonding
- The dominant structural unit is the B₁₂ icosahedron, which also occurs in metal boride structures
- Fivefold rotation symmetry at individual boron atoms gives rise to inefficient packing of B₁₂ icosahedra, giving regularly spaced voids to be occupied by metal or other atoms

- Structural complexity of boron arises from the way it seeks to solve the problem of having fewer electrons than atomic orbitals available for bonding
- Elements in this situation usually adopt metallic bonding
- Due to its small size and high ionization energy, B engages in covalent bonding
- The dominant structural unit is the B₁₂ icosahedron, which also occurs in metal boride structures
- Fivefold rotation symmetry at individual boron atoms gives rise to inefficient packing of B₁₂ icosahedra, giving regularly spaced voids to be occupied by metal or other atoms

Rhombohedral Boron

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

5.03 Inorganic Chemistry

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

- Boron carbide has a unique combination of properties that make it a material of choice for a wide range of engineering applications
- Boron carbide is used in refractory applications due to its high melting point and thermal stability
- It is used as abrasive powders and coatings due to its extreme abrasion resistance
- It excels in ballistic performance due to its high hardness and low density
- It is commonly used in nuclear applications as a neutron radiation absorbent
- Boron carbide is also a high temperature semiconductor

• Elements are the B_{12} icosahedra and the C_3 chains

- Exact site occupancies are still debated due to similar electron and nuclear scattering cross-section for ¹¹B and ¹²C isotopes
- \bullet Idealized structural configuration is (B_{12})CCC, the carbon-rich B_4C compound

- Elements are the B_{12} icosahedra and the C_3 chains
- Exact site occupancies are still debated due to similar electron and nuclear scattering cross-section for ¹¹B and ¹²C isotopes
- Idealized structural configuration is $(B_{12})CCC$, the carbon-rich B_4C compound

- Elements are the B_{12} icosahedra and the C_3 chains
- Exact site occupancies are still debated due to similar electron and nuclear scattering cross-section for ¹¹B and ¹²C isotopes
- Idealized structural configuration is $(B_{12})CCC$, the carbon-rich B_4C compound

Boron Carbide Lattice Structure

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

< 4 ₽ > < E

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

Image: A math a math

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

Image: A math a math

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

- Success in a profession can often be traced to being in the right place at the right time
- Became leader of exploratory research group at the Army's Redstone Arsenal, 1950s
- Mission was exploration of borane chemistry to be applied to Cold War rocket motors
- Ph.D. work was in physical organic chemistry; BF₃ was the only boron reagent he had used!
- Decaborane, B₁₀H₁₄, was available from a jet engine fuel program, so investigated its characteristics in well-known organic reactions
- Exploratory work revealed the borane analogs of aromatic hydrocarbons, B_nH_n²⁻ with closed polyhedral structures

- Another feature of boron is its two isotopes, ¹⁰B and ¹¹B that differ by an extra neutron in the ¹¹B nucleus
- Cancer therapy may benefit from the chemistry of boron coupled to the reaction of the ¹⁰B nucleus with a neutron
- ${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He} + \gamma + 2.4 \text{ MeV}$
- If the boron neutron capture reaction can be targeted to cancer cells, the Li and He products will kill the cell without damage to the healthy neighboring cells
- This highly specific reaction is unique among the light elements

- Another feature of boron is its two isotopes, ¹⁰B and ¹¹B that differ by an extra neutron in the ¹¹B nucleus
- Cancer therapy may benefit from the chemistry of boron coupled to the reaction of the ¹⁰B nucleus with a neutron
- ${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He} + \gamma + 2.4 \text{ MeV}$
- If the boron neutron capture reaction can be targeted to cancer cells, the Li and He products will kill the cell without damage to the healthy neighboring cells
- This highly specific reaction is unique among the light elements
"Boron, my Favorite Element" Fred Hawthorne Vol. 86 No. 10 October 2009 Journal of Chemical Education, 1131–1131

- Another feature of boron is its two isotopes, ¹⁰B and ¹¹B that differ by an extra neutron in the ¹¹B nucleus
- Cancer therapy may benefit from the chemistry of boron coupled to the reaction of the ¹⁰B nucleus with a neutron
- ${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He} + \gamma + 2.4 \text{ MeV}$
- If the boron neutron capture reaction can be targeted to cancer cells, the Li and He products will kill the cell without damage to the healthy neighboring cells
- This highly specific reaction is unique among the light elements

"Boron, my Favorite Element" Fred Hawthorne Vol. 86 No. 10 October 2009 Journal of Chemical Education, 1131–1131

- Another feature of boron is its two isotopes, ¹⁰B and ¹¹B that differ by an extra neutron in the ¹¹B nucleus
- Cancer therapy may benefit from the chemistry of boron coupled to the reaction of the ¹⁰B nucleus with a neutron
- ${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He} + \gamma + 2.4 \text{ MeV}$
- If the boron neutron capture reaction can be targeted to cancer cells, the Li and He products will kill the cell without damage to the healthy neighboring cells
- This highly specific reaction is unique among the light elements

"Boron, my Favorite Element" Fred Hawthorne Vol. 86 No. 10 October 2009 Journal of Chemical Education, 1131–1131

- Another feature of boron is its two isotopes, ¹⁰B and ¹¹B that differ by an extra neutron in the ¹¹B nucleus
- Cancer therapy may benefit from the chemistry of boron coupled to the reaction of the ¹⁰B nucleus with a neutron
- ${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li} + {}^{4}\text{He} + \gamma + 2.4 \text{ MeV}$
- If the boron neutron capture reaction can be targeted to cancer cells, the Li and He products will kill the cell without damage to the healthy neighboring cells
- This highly specific reaction is unique among the light elements

= 990

"Boron, my Favorite Element" Fred Hawthorne

heterocyclic, and organometallic organic compounds. The first boranes had been discovered in Germany by Alfred Stock in the early 1900s (B₂H₆, B₄H₁₀, B₅H₉, etc.) and these relatively unstable species corresponded to the aliphatic hydrocarbons.

Exploratory work revealed the borane analogs of aromatic hydrocarbons, which proved to be a complete family of $B_{\mu}H_{\mu}^{2-}$ dianions with $\underline{\mu} = 6$ to 12 inclusive and having closed polyhedral structures. Like the aromatic hydrocarbons, these species were very stable and the icosahedral $B_{12}H_{12}^{2-}$ ion is probably the most

Figure 1. Starting with $B_{12}(OH)_{12}^{2-}$ as a core, the Hawthorne group creates nanoparticles capable of carrying various payload molecules—an imaging contrast agent, a biomolecule for tumor or organ targeting, or a drug—for potential all-in-one life-saving therapy, as shown schematically. In one example, they have created a potential anticancer agent by attaching 12 copies of doxorubicin to the B_{12} core via enzymatically cleavable peptides. Courtesy of Fred Hawthorne.

Image: A mathematical states and a mathem

Massachusetts Institute of Fechnology

5.03

• What is the strongest acid?

- Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature?
- Can that acid be free of the complicating effects of added Lewis acids that are typical of common superacid mixtures?
- The carborane superacid $H(CHB_{11}F_{11})$ is that acid

The Strongest Acid

DOI: 10.1002/anie.201308586

< A > < 3

The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB₁₁F₁₁) at Room Temperature**

- What is the strongest acid?
- Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature?
- Can that acid be free of the complicating effects of added Lewis acids that are typical of common superacid mixtures?
- The carborane superacid $H(CHB_{11}F_{11})$ is that acid

The Strongest Acid

DOI: 10.1002/anie.201308586

< A > < 3

The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB₁₁F₁₁) at Room Temperature**

- What is the strongest acid?
- Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature?
- Can that acid be free of the complicating effects of added Lewis acids that are typical of common superacid mixtures?
- The carborane superacid $H(CHB_{11}F_{11})$ is that acid

The Strongest Acid

DOI: 10.1002/anie.201308586

< A > < 3

The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB₁₁F₁₁) at Room Temperature**

- What is the strongest acid?
- Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature?
- Can that acid be free of the complicating effects of added Lewis acids that are typical of common superacid mixtures?
- The carborane superacid H(CHB₁₁F₁₁) is that acid

DOI: 10.1002/anie.201308586

The Strongest Acid

The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB₁₁F₁₁) at Room Temperature**

- What is the strongest acid?
- Can a simple Brønsted acid be prepared that can protonate an alkane at room temperature?
- Can that acid be free of the complicating effects of added Lewis acids that are typical of common superacid mixtures?
- The carborane superacid H(CHB₁₁F₁₁) is that acid

DOI: 10.1002/anie.201308586

The Strongest Acid

The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB₁₁F₁₁) at Room Temperature**