The Electron Deficient Borane Molecule

Christopher C. Cummins

Massachusetts Institute of Technology

ccummins@mit.edu
1 Why is Borane Electron-Deficient?
Borane Dimerizes
What is the energy of the dimerization reaction?

- \(\Delta H^\circ_f \) (gas) for BH\(_3\) = 25.5 kcal/mol
- \(\Delta H^\circ_f \) (gas) for B\(_2\)H\(_6\) = 9.799 kcal/mol
- \(\Delta H^\circ_{rxn} \) (gas) for 2 BH\(_3\) \(\rightarrow\) B\(_2\)H\(_6\) = 9.799 – 2(25.5) = \(-41\) kcal/mol
- The C\(_2\)H\(_4\) molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite \(\Delta H^\circ_f \) values in the NIST database
- We look to interpret the bonding in B\(_2\)H\(_6\) using symmetry and MO theory
Borane Dimerizes
What is the energy of the dimerization reaction?

- $\Delta H^\circ_f(gas)$ for BH$_3$ = 25.5 kcal/mol
- $\Delta H^\circ_f(gas)$ for B$_2$H$_6$ = 9.799 kcal/mol
- $\Delta H^\circ_{rxn}(gas)$ for 2 BH$_3$ → B$_2$H$_6$ = 9.799 − 2(25.5) = −41 kcal/mol

The C$_2$H$_4$ molecule is isoelectronic, how does its central bond energy compare?

Look up the requisite ΔH°_f values in the NIST database

We look to interpret the bonding in B$_2$H$_6$ using symmetry and MO theory
Borane Dimerizes
What is the energy of the dimerization reaction?

- $\Delta H_f^o(gas)$ for BH$_3$ = 25.5 kcal/mol
- $\Delta H_f^o(gas)$ for B$_2$H$_6$ = 9.799 kcal/mol
- $\Delta H_{rxn}^o(gas)$ for 2 BH$_3 \rightarrow$ B$_2$H$_6$ = 9.799 – 2(25.5) = −41 kcal/mol

- The C$_2$H$_4$ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f^o values in the NIST database
- We look to interpret the bonding in B$_2$H$_6$ using symmetry and MO theory
Why is Borane Electron-Deficient?

Borane Dimerizes
What is the energy of the dimerization reaction?

- $\Delta H_f^o (\text{gas})$ for BH$_3$ = 25.5 kcal/mol
- $\Delta H_f^o (\text{gas})$ for B$_2$H$_6$ = 9.799 kcal/mol
- $\Delta H_{\text{rxn}}^o (\text{gas})$ for 2 BH$_3$ \rightarrow B$_2$H$_6$ = 9.799 $-$ 2(25.5) = $-$41 kcal/mol

The C$_2$H$_4$ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f^o values in the NIST database
- We look to interpret the bonding in B$_2$H$_6$ using symmetry and MO theory
Borane Dimerizes

What is the energy of the dimerization reaction?

- $\Delta H_f^\circ(gas)$ for BH$_3$ = 25.5 kcal/mol
- $\Delta H_f^\circ(gas)$ for B$_2$H$_6$ = 9.799 kcal/mol
- $\Delta H_{rxn}^\circ(gas)$ for 2 BH$_3$ → B$_2$H$_6$ = 9.799 − 2(25.5) = −41 kcal/mol

The C$_2$H$_4$ molecule is isoelectronic, how does its central bond energy compare?

Look up the requisite ΔH_f° values in the NIST database

We look to interpret the bonding in B$_2$H$_6$ using symmetry and MO theory
Borane Dimerizes
What is the energy of the dimerization reaction?

- ΔH_f° (gas) for BH$_3 =$ 25.5 kcal/mol
- ΔH_f° (gas) for B$_2$H$_6 =$ 9.799 kcal/mol
- $\Delta H^\circ_{\text{rxn}}$ (gas) for 2 BH$_3 \rightarrow$ B$_2$H$_6 =$ 9.799 $-$ 2(25.5) = $-$41 kcal/mol

The C$_2$H$_4$ molecule is isoelectronic, how does its central bond energy compare?
Look up the requisite ΔH_f° values in the NIST database
We look to interpret the bonding in B$_2$H$_6$ using symmetry and MO theory
The covalent radius \(r_{\text{cov}} \) for boron is 0.81 Å.

- Therefore, a B-B single bond is expected to be \(2(r_{\text{cov}}) = 1.62 \) Å.
- Right-click in the diborane applet to get access to the interatomic distances.
- We find the B-B distance to be 1.76 Å.
- This is longer by 0.14 Å than a B-B single bond.
- We might expect some partial B-B bonding.
- Let’s investigate the bonding with MO theory!
Do we Expect to Find B-B Bonding in Diborane?
Examine the structure and check the B-B distance

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let’s investigate the bonding with MO theory!
The covalent radius \(r_{\text{cov}} \) for boron is 0.81 Å.

Therefore, a B-B single bond is expected to be \(2(r_{\text{cov}}) = 1.62 \) Å.

Right-click in the diborane applet to get access to the interatomic distances.

We find the B-B distance to be 1.76 Å.

This is longer by 0.14 Å than a B-B single bond.

We might expect some partial B-B bonding.

Let’s investigate the bonding with MO theory!
The covalent radius r_{cov} for boron is 0.81 Å.

Therefore, a B-B single bond is expected to be $2(r_{\text{cov}}) = 1.62$ Å.

Right-click in the diborane applet to get access to the interatomic distances.

We find the B-B distance to be 1.76 Å.

This is longer by 0.14 Å than a B-B single bond.

We might expect some partial B-B bonding.

Let’s investigate the bonding with MO theory!
Why is Borane Electron-Deficient?

Do we Expect to Find B-B Bonding in Diborane?
Examine the structure and check the B-B distance

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{\text{cov}}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let’s investigate the bonding with MO theory!
Do we Expect to Find B-B Bonding in Diborane?
Examine the structure and check the B-B distance

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let’s investigate the bonding with MO theory!
The covalent radius r_{cov} for boron is 0.81 Å.

Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å.

Right-click in the diborane applet to get access to the interatomic distances.

We find the B-B distance to be 1.76 Å.

This is longer by 0.14 Å than a B-B single bond.

We might expect some partial B-B bonding.

Let’s investigate the bonding with MO theory!
Begin by Choosing our Coordinate System
This is not a planar molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule
Why is Borane Electron-Deficient?

Begin by Choosing our Coordinate System
This is not a planar molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule
Why is Borane Electron-Deficient?

Begin by Choosing our Coordinate System
This is not a planar molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule
Why is Borane Electron-Deficient?

Begin by Choosing our Coordinate System
This is not a planar molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule
Why is Borane Electron-Deficient?

Begin by Choosing our Coordinate System
This is not a planar molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule
Boron has four valence atomic orbitals: $2s, 2p_x, 2p_y, 2p_z$

- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the $4 + 4 + 6 = 14$ valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant
Boron has four valence atomic orbitals: $2s, 2p_x, 2p_y, 2p_z$.

There are six H atoms each with a single 1s valence orbital.

All of the MOs will be combinations of the $4 + 4 + 6 = 14$ valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group.

Will all 14 of the MOs be occupied?

The number of valence electron pairs is six.

We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant.
Why is Borane Electron-Deficient?

More Restrictions on the MOs
This is not a planar molecule

- Boron has four valence atomic orbitals: $2s, 2p_x, 2p_y, 2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the $4 + 4 + 6 = 14$ valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant
Boron has four valence atomic orbitals: $2s$, $2p_x$, $2p_y$, $2p_z$

There are six H atoms each with a single 1s valence orbital

All of the MOs will be combinations of the $4 + 4 + 6 = 14$ valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group

Will all 14 of the MOs be occupied?

The number of valence electron pairs is six

We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant
Boron has four valence atomic orbitals: 2s, 2pₓ, 2pᵧ, 2pᶻ.

There are six H atoms each with a single 1s valence orbital.

All of the MOs will be combinations of the 4 + 4 + 6 = 14 valence atomic orbitals; each combination must belong to one of the irreducible representations of the D₂h point group.

Will all 14 of the MOs be occupied?

The number of valence electron pairs is six.

We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant.
More Restrictions on the MOs
This is not a planar molecule

- Boron has four valence atomic orbitals: $2s, 2p_x, 2p_y, 2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the $4 + 4 + 6 = 14$ valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant
Why is Borane Electron-Deficient?

The D_{2h} Character Table

<table>
<thead>
<tr>
<th>D_{2h}</th>
<th>E</th>
<th>$C_2(z)$</th>
<th>$C_2(y)$</th>
<th>$C_2(x)$</th>
<th>i</th>
<th>$\sigma(xy)$</th>
<th>$\sigma(xz)$</th>
<th>$\sigma(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_{1g}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{2g}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{3g}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>A_u</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>B_{1u}</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_{2u}</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_{3u}</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

R_z, xy, xz, yz

x^2, y^2, z^2
Why is Borane Electron-Deficient?

Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.
- The two bridging hydrogens H_b are symmetry related.
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.
- We can use the H_t set to generate the reducible representation $\Gamma_{\text{red}} = 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 4 \ 0$.
- The characters of $\Gamma_{\text{red}}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.
- The characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$.

5.03 Lecture 4 Electron Deficient Molecules
Why is Borane Electron-Deficient?

Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.
- The two bridging hydrogens H_b are symmetry related.
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.
- We can use the H_t set to generate the reducible representation $\Gamma_{\text{red}} = 4 0 0 0 0 0 4 0$.
- The characters of $\Gamma_{\text{red}}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.
- The characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$.

5.03 Lecture 4 Electron Deficient Molecules
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.
- The two bridging hydrogens H_b are symmetry related.
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \end{bmatrix}$
- The characters of $\Gamma_{red}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$.
Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.

The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.

The two bridging hydrogens H_b are symmetry related.

None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.

We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 4 \ 0$.

The characters of $\Gamma_{red}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.

The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$. 5.03 Lecture 4 Electron Deficient Molecules
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.
- The two bridging hydrogens H_b are symmetry related.
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.
- We can use the H_t set to generate the reducible representation $\Gamma_{\text{red}} = 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 4 \ 0$

- The characters of $\Gamma_{\text{red}}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.
- The characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.
- The two bridging hydrogens H_b are symmetry related.
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.

We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 4 \ 0$

The characters of $\Gamma_{red}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.

The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$
Atoms or atomic orbitals are “symmetry-related” if they are interchanged upon carrying out the operations of the group.

The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related.

The two bridging hydrogens H_b are symmetry related.

None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals.

We can use the H_t set to generate the reducible representation $\Gamma_{red} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \end{bmatrix}$.

The characters of $\Gamma_{red}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations.

The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$.
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.

- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2$.
- $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$.
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.

- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.

- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$.
Why is Borane Electron-Deficient?

Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.

- What about the pair of H_b atoms?
 - We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 0 2 0 0 2 0 2$
 - $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$
 - Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.
 - Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.
 - Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$.
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2$
 - $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$
 - Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.
- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$
Why is Borane Electron-Deficient?

Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2$
- $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.
- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2$
- $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.
- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$.
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = \begin{pmatrix} 2 & 0 & 2 & 0 & 0 & 2 & 0 & 2 \end{pmatrix}$
- $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.
- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$.
Finding the Symmetry Species of the MOs
Start by looking for sets of symmetry-related atoms/orbitals

- Since the characters of $\Gamma_{\text{red}}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species.

- What about the pair of H_b atoms?

- We can use the H_b set to generate the reducible representation $\Gamma_{\text{red}} = 2 \ 0 \ 2 \ 0 \ 0 \ 2 \ 0 \ 2$.

- $\Gamma_{\text{red}}(H_b)$ can be reduced to $A_g + B_{2u}$.

- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry.

- Note, from the Lewis picture of B_2H_6, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms.

- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$.
Why is Borane Electron-Deficient?

How to Interpret the MO energies
Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO
the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
MOs constructed from low-energy (electronegative) AOs will tend to be low energy
AO’s of similar energy tend to mix strongly
Good overlap leads to strong mixing
The presence of antibonding nodes makes for a high-energy MO
Why is Borane Electron-Deficient?

How to Interpret the MO energies
Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV

- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO
Why is Borane Electron-Deficient?

How to Interpret the MO energies
Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO
Why is Borane Electron-Deficient?

How to Interpret the MO energies
Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
 - Good overlap leads to strong mixing
 - The presence of antibonding nodes makes for a high-energy MO
Why is Borane Electron-Deficient?

How to Interpret the MO energies
Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

5.03 Lecture 4 Electron Deficient Molecules
How to Interpret the MO energies

Remember what you know about AO energies

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen $1s$ orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron $2s$ orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron $2p$ orbital is 8.3 eV

- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO’s of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO
Inspect the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the **diborane applet** to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2 \ 2 \ 0 \ 0 \ 0 \ 2 \ 2$
- $\Gamma_{red}(\text{boron } 2p_z) = A_g + B_{1u}$
- And so on!
Why is Borane Electron-Deficient?

Inspect the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces.
- How would you determine the symmetry species of the other 8 valence MOs?
 - Use symmetry-related pairs of boron atom AOs as bases for reducible representations.
 - For example, the pair of boron 2p_z orbitals give $\Gamma_{\text{red}} = 2 2 0 0 0 2 2$
 - $\Gamma_{\text{red}}(\text{boron } 2p_z) = A_g + B_{1u}$
 - And so on!
Why is Borane Electron-Deficient?

Inspect the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the **diborane applet** to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
 - For example, the pair of boron 2\(p_z \) orbitals give \(\Gamma_{\text{red}} = 2 \ 2 \ 0 \ 0 \ 0 \ 2 \ 2 \)
 - \(\Gamma_{\text{red}}(\text{boron } 2p_z) = A_g + B_{1u} \)
 - And so on!
Why is Borane Electron-Deficient?

Inspection of the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces.
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations.
- For example, the pair of boron 2p_z orbitals give \(\Gamma_{red} = 2 \ 2 \ 0 \ 0 \ 0 \ 2 \ 2 \)
 - \(\Gamma_{red}(\text{boron} \ 2p_z) = A_g + B_{1u} \)
 - And so on!
Why is Borane Electron-Deficient?

Inspect the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2 \ 2 \ 0 \ 0 \ 0 \ 2 \ 2$
- $\Gamma_{red}(\text{boron } 2p_z) = A_g + B_{1u}$
- And so on!
Why is Borane Electron-Deficient?

Inspect the Occupied MOs for Diborane
What would corresponding antibonding MOs look like?

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron 2p_z orbitals give \(\Gamma_{\text{red}} = 2 \ 2 \ 0 \
\ 0 \ 0 \ 0 \ 2 \ 2 \)
- \(\Gamma_{\text{red}}(\text{boron } 2p_z) = A_g + B_{1u} \)
- And so on!