The Electron Deficient Borane Molecule

Christopher C. Cummins

Massachusetts Institute of Technology

ccummins@mit.edu

Outline

1 Why is Borane Electron-Deficient?

• $\Delta H_f^{\circ}(gas)$ for BH₃ = 25.5 kcal/mol

- $\Delta H_f^{\circ}(gas)$ for $B_2H_6 = 9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

- $\Delta H_f^{\circ}(\text{gas})$ for BH₃ = 25.5 kcal/mol
- $\Delta H_f^{\circ}(gas)$ for $B_2H_6 = 9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

- $\Delta H_f^{\circ}(\text{gas})$ for BH₃ = 25.5 kcal/mol
- $\Delta H_f^{\circ}(gas)$ for $B_2H_6 = 9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

▲ 同 ▶ → 三 ▶

- $\Delta H_f^{\circ}(\text{gas})$ for $BH_3 = 25.5 \text{ kcal/mol}$
- $\Delta H_f^{\circ}(gas)$ for $B_2H_6 = 9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

Image: A image: A

- $\Delta H_f^{\circ}(\text{gas})$ for $BH_3 = 25.5 \text{ kcal/mol}$
- $\Delta H_f^{\circ}(gas)$ for $B_2H_6 = 9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

Image: A = A

- $\Delta H_f^{\circ}(\text{gas})$ for $BH_3 = 25.5 \text{ kcal/mol}$
- $\Delta H_f^{\circ}(\text{gas})$ for $B_2H_6=9.799$ kcal/mol
- $\Delta H^{\circ}_{rxn}(gas)$ for 2 BH₃ \rightarrow B₂H₆ = 9.799 2(25.5) = -41 kcal/mol
- The C₂H₄ molecule is isoelectronic, how does its central bond energy compare?
- Look up the requisite ΔH_f° values in the NIST database
- $\bullet\,$ We look to interpret the bonding in $\mathsf{B}_2\mathsf{H}_6$ using symmetry and MO theory

Image: A = A

• The covalent radius r_{cov} for boron is 0.81 Å

- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- $\bullet\,$ We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- ${\scriptstyle \bullet}$ We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- ${\scriptstyle \bullet}$ We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

- The covalent radius r_{cov} for boron is 0.81 Å
- Therefore, a B-B single bond is expected to be $2(r_{cov}) = 1.62$ Å
- Right-click in the diborane applet to get access to the interatomic distances
- We find the B-B distance to be 1.76 Å
- This is longer by 0.14 Å than a B-B single bond
- We might expect some partial B-B bonding
- Let's investigate the bonding with MO theory!

• Take the B-B axis to define the z direction

- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule

- Take the B-B axis to define the z direction
- Take the pair of bridging H atoms H_b to define the y direction
- Then the four terminal atoms H_t lie in the xz plane but not on any of the Cartesian axes
- Note that there is no central atom in this problem!
- This carries the implication that none of the MOs can be as simple as one of the atomic orbitals on a central atom as was the case for the HOMO of the water molecule

• Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$

- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

- Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

- Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

- Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

- Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

- Boron has four valence atomic orbitals: 2s, $2p_x$, $2p_y$, $2p_z$
- There are six H atoms each with a single 1s valence orbital
- All of the MOs will be combinations of the 4 + 4 + 6 = 14valence atomic orbitals; each combination must belong to one of the irreducible representations of the D_{2h} point group
- Will all 14 of the MOs be occupied?
- The number of valence electron pairs is six
- We expect the lowest-energy six MOs to be occupied, and the higher-energy MOs to be vacant

Why is Borane Electron-Deficient?

The D_{2h} Character Table

D _{2h}	Ε	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$. 1 . 172
Ag	1	1	1	1	1	1	1	1	a star	x^2, y^2, z^2
B_{1g}	1	1	-1	-1	1	1	-1	-1	R _z	xy
B_{2g}	1	-1	1	-1	1	-1	1	-1	R,	xz
B _{3g}	1	-1	-1	1	1	-1	-1	1	R _x	yz
Au	1	1	1	1	-1	-1	-1	-1	-	
B _{1u}	1	1	-1	-1	-1	-1	1	1	z	a second
B ₂	1	-1	1	-1	-1	1	-1	1	l y	60 63 6
B ₃₄	1	-1	-1	1	-1	1	1	-1	x	1 1

Э

< ≣

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

- 4 同 ト 4 ヨ ト 4 ヨ

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

- 4 同 6 4 日 6 4 日 6

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

- 4 同 6 4 日 6 4 日 6

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$ Massachuse Institute of Technology

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of Γ_{red}(H_t) are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

- Atoms or atomic orbitals are "symmetry-related" if they are interchanged upon carrying out the operations of the group
- The four terminal hydrogens H_t (each has a 1s atomic orbital) are symmetry related
- The two bridging hydrogens H_b are symmetry related
- None of the group operations interchanges any of the H_t with any of the H_b atoms/orbitals
- We can use the H_t set to generate the reducible representation $\Gamma_{red} = 4\ 0\ 0\ 0\ 0\ 4\ 0$
- The characters of $\Gamma_{red}(H_t)$ are obtained by noting how many atoms in the H_t set are unshifted upon carrying out the group operations
- The characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$

Why is Borane Electron-Deficient?

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{red} = 2\ 0\ 2\ 0\ 0\ 2\ 0\ 2$
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

Why is Borane Electron-Deficient?

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{red} = 2\ 0\ 2\ 0\ 0\ 2\ 0$
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation Γ_{red} = 2 0 2 0 0 2 0 2
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation Γ_{red} = 2 0 2 0 0 2 0 2
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{red} = 2\ 0\ 2\ 0\ 0\ 2\ 0\ 2$
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation $\Gamma_{red} = 2\ 0\ 2\ 0\ 0\ 2\ 0\ 2$
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- Since the characters of $\Gamma_{red}(H_t) = A_g + B_{2g} + B_{1u} + B_{3u}$, we expect the four 1s orbitals of the H_t set to appear in MOs having these four symmetry species
- What about the pair of H_b atoms?
- We can use the H_b set to generate the reducible representation Γ_{red} = 2 0 2 0 0 2 0 2
- $\Gamma_{red}(H_b)$ can be reduced to $A_g + B_{2u}$
- Therefore, we expect the H_b 1s atomic orbitals to contribute to a pair of bonding MOs having A_g and B_{2u} symmetry
- Note, from the Lewis picture of B₂H₆, we can expect that all six valence electron pairs reside in MOs that have bonding character involving the hydrogen atoms
- Now, we expect the six occupied MOs to transform as $2A_g + B_{2g} + B_{1u} + B_{2u} + B_{3u}$

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2*s* orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

▲ 同 ▶ → 三 ▶

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

Image: A image: A

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

Image: A image: A

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

Image: A image: A

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

< 4 ₽ > < 3

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

< /□ > < 3

- the Valence Orbital Ionization Energy (VOIE) for a hydrogen 1s orbital is 13.6 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2s orbital is 14.0 eV
- the Valence Orbital Ionization Energy (VOIE) for a boron 2p orbital is 8.3 eV
- MOs constructed from low-energy (electronegative) AOs will tend to be low energy
- AO's of similar energy tend to mix strongly
- Good overlap leads to strong mixing
- The presence of antibonding nodes makes for a high-energy MO

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!

- Use the drop-down menu in the diborane applet to get access to the MO isosurfaces
- How would you determine the symmetry species of the other 8 valence MOs?
- Use symmetry-related pairs of boron atom AOs as bases for reducible representations
- For example, the pair of boron $2p_z$ orbitals give $\Gamma_{red} = 2\ 2\ 0\ 0\ 0\ 2\ 2$
- $\Gamma_{red}(boron \ 2p_z) = A_g + B_{1u}$
- And so on!