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Single versus Triple Bonds
Atomic energy levels, valence orbital ionization energies (VOIE)

∆H◦
f for P2 is +144 kJ/mol

∆H◦
f for P≡N is +104 kJ/mol
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Multiple Bonds in Inorganic Chemistry
Discarding the double bond rule? DOI: 10.1002/anie.198610381

The higher the sum of electronegativities of the two atoms
involved in bonding, the higher the probability for formation
of a double bond

The value 5.0 is given as an approximate limit

The use of bulky ligands has allowed the synthesis of
compounds containing Si=Si (ΣEN = 3.6) or P=P (ΣEN =
4.2) double bonds
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Yoshifuji’s Example of a Phosphobenzene
Isolated and characterized in 1981, DOI: 10.1021/ja00405a054

Replacement of even one ortho tert-butyl group with isopropyl
leads to polymerization

Comparison is to azobenzene, Ph-N=N-Ph, a perfectly stable
compound
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Structure: NH3 versus PH3

Easier mixing/hybridization of valence atomic s and p orbitals
for N versus P

Valence atomic s and p orbitals are closer in energy for N than
for P
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Structure: NH3 versus PH3

Ammonia lone pair is 25%s, 75%p; this is ideal sp3

hybridization
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Structure: NH3 versus PH3

Ammonia lone pair is 54%s, 46%p; this is sp0.84 hybridization
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Inversion Frequency NH3 vs. PH3
Ammonia inversion involves an umbrella motion of the atoms

Inversion frequency greater by factor of 4000 for NH3!

155 vs. 24.7 kJ/mol inversion barrier
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Bent’s Rule DOI: 10.1021/ed037p616
Distribution of atomic s character in molecules and its chemical implications

s character accumulates in orbitals directed toward
electropositive substituents

A lone pair is like a bond to a group of infinite electropositivity

Properties of inversion barrier: increases with increasing
relative substituent EN

Example: trisilylamine is planar at nitrogen
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Explaining the Walsh-Bent Rule
Distribution of atomic s character in molecules and its chemical implications
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s Character and Base Strength
Distribution of atomic s character in molecules and its chemical implications

N2 is less basic than pyridine

Pyridine is less basic than ammonia

The lone pair in these compounds: sp, sp2, sp3

As the s character increases, the base strength decreases
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Nitric Acid Synthesis

Commercialization relied upon large scale NH3 availability via
Haber-Bosch

Largest use is for ammonium nitrate fertilizer production
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Nitric Acid Synthesis

Depends upon catalyst selectivity for NO over other
thermodynamically favorable products
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Nitrate versus Metaphosphate

Nitrate ion has D3h symmetry (isoelectronic to BF3)

Nitrate enjoys delocalized π bonding

Metaphosphate is not seen as a monomer, but rather forms
rings

Opening metaphosphate rings gives chains such as is found in
ATP
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Dihydrogen Tetrametaphosphate

pKa = 15.83 + 0.11 
          (MeCN, 23 oC)

-
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Tetrametaphosphate Anhydride

acetone (< 0.5 w/w H2O)
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31P{1H} NMR (CD3CN)

P4O11

A-2P
X-2P

DCC = N,N'-dicyclohexylcarbodiimide

A2X2 spin system H3PO4
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O O
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N N
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Glonek, T.; Myers, T. C.; Han, J. R.  
J. Am. Chem. Soc. 1970, 92, 7214-7216
Glonek, T.; Van Wazer, J. R.; Kleps, R. A.; Myers, T. C. 
Inorg. Chem. 1974, 13, 2337-2345
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Phosphorus Pentoxide, P4O10

A nice inorganic example of Td symmetry!
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Nitric Oxide
Science, 1992, 258, 1862-1865.
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Other Oxides of Nitrogen

Nitrous oxide, N2O, is known as laughing gas

N4O isolated in 1993 as a pale yellow solid

NO2 is a brown paramagnetic gas that dimerizes reversibly

Nitrite is the [NO2]− anion

Nitrate is the [NO3]− anion
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The Variety of Nitrogen Oxides
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Molecular Structure of Hydrazoic Acid
Hydrogen-bonded tetramers in nearly planar layers DOI: 10.1021/ja2027053

The crystalline acid is 97.7 wt % nitrogen!
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For the structure determination, single crystals were grown in
situ in the X-ray capillary ... near the melting point of HN3 at
ca. 193 K in several melting and crystallizing cycles

“The tip of a finger, carefully touching the capillary, was used
as the heating source”
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Phosphate Rock Mining: Peak Phosphorus
http://phosphorusfutures.net/peak-phosphorus
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Phosphate Rock Reserves
Neset2012, http://dx.doi.org/10.1002/jsfa.4650

Inorganic Chemistry 5.03



Phosphate Rock Reserves
http://www.worldresourcesforum.org/resource-snapshot-5-phosphorus
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Global Sources of Phosphorus Fertilizers
Cordell2009, http://dx.doi.org/10.1016/j.gloenvcha.2008.10.009
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Phosphate Mining in Morocco
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Cargill Phosphate Mines in Florida
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Central Florida Mined Out
http://www.manasota88.org/phosphate.html
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Phosphorus Flow in Africa
Cordell2009, http://dx.doi.org/10.1016/j.gloenvcha.2008.10.009
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Reuse of Human Excreta
Cordell2009, http://dx.doi.org/10.1016/j.gloenvcha.2008.10.009
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Composting to Recycle Human Excreta
Composting saves water and energy as well as nitrogen and phosphorus!
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Changes in Soil Phosphorus Availability with Time
Note that phosphorus is continually lost from the system; from Filippelli2008 DOI:
10.2113/GSELEMENTS.4.2.89
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Phosphorus Recycling
Steve Safferman of MSU pursuing iron-based precipitation scheme
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Enviropig, U. of Guelph
Genetically engineered pig breaks down and absorbs more phosphorus, excretes less
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