Point Groups

Christopher C. Cummins

Massachusetts Institute of Technology

ccummins@mit.edu

- The product of any two elements in the group and the square of each element must be an element in the group
- One element in the group must commute with all others and leave them unchanged
- The associative law of multiplication must hold
- Every element must have a reciprocal, which is also an element of the group

- The product of any two elements in the group and the square of each element must be an element in the group
- One element in the group must commute with all others and leave them unchanged
- Interpretation of multiplication must hold
- Every element must have a reciprocal, which is also an element of the group

- The product of any two elements in the group and the square of each element must be an element in the group
- One element in the group must commute with all others and leave them unchanged
- The associative law of multiplication must hold
- Every element must have a reciprocal, which is also an element of the group

- The product of any two elements in the group and the square of each element must be an element in the group
- One element in the group must commute with all others and leave them unchanged
- The associative law of multiplication must hold
- Every element must have a reciprocal, which is also an element of the group

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry *operations* generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry *operations* generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry *operations* generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry *operations* generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"

Groups and their Operations

- C₁: E
- C_s : E, σ_h
- C_i: E, i

• Note that each Point Group is referred to by its label, e.g. C_s

A 10

Groups and their Operations

- C₁: E
- C_s : E, σ_h
- C_i: E, i

• Note that each Point Group is referred to by its label, e.g. C_s

_ ₽ ▶

Groups and their Operations

- *C*₁: *E*
- C_s : E, σ_h
- C_i: E, i

• Note that each Point Group is referred to by its label, e.g. C_s

Groups and their Operations

- C₁: E
- C_s : E, σ_h
- C_i: E, i

• Note that each Point Group is referred to by its label, e.g. C_s

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C_3 : E, C_3 , C_3^2
- \bullet An example is a particular conformation of $\mathsf{B}(\mathsf{OH})_3$
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C_3 : E, C_3 , C_3^2
- An example is a particular conformation of B(OH)₃
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C_3 : E, C_3 , C_3^2
- An example is a particular conformation of B(OH)₃
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C₃: E, C₃, C₃²
- An example is a particular conformation of $B(OH)_3$
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C₃: E, C₃, C₃²
- An example is a particular conformation of B(OH)₃
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

Groups with a Single Principal Rotation Axis

- C₂: E, C₂
- An example is HOOH in its equilibrium conformation
- C₃: E, C₃, C₃²
- An example is a particular conformation of B(OH)₃
- The *C_n* groups other than *C*₁ have only the identity and a single principal rotation axis as elements of symmetry
- The *C_n* groups correspond to *n*-bladed propellor shapes lacking top-bottom symmetry

D_n Groups These have a principal *n*-fold rotation axis and $n \perp C_2$ axes

D_n Groups have no mirror planes or inversion centers

- D_2 : E, $C_2(z)$, $C_2(y)$, $C_2(x)$,
- D₃: E, C₃, C₃², 3C₂

• The D_n groups correspond to *n*-bladed propellor shapes

D_n Groups These have a principal *n*-fold rotation axis and $n \perp C_2$ axes

D_n Groups have no mirror planes or inversion centers

- D_2 : E, $C_2(z)$, $C_2(y)$, $C_2(x)$,
- D₃: E, C₃, C₃², 3C₂

• The D_n groups correspond to *n*-bladed propellor shapes

< 67 ▶

D_n Groups These have a principal *n*-fold rotation axis and $n \perp C_2$ axes

 D_n Groups have no mirror planes or inversion centers

- D_2 : E, $C_2(z)$, $C_2(y)$, $C_2(x)$,
- D₃: E, C₃, C₃², 3C₂
- The D_n groups correspond to *n*-bladed propellor shapes

$C_{n\nu}$ Groups These have a principal *n*-fold rotation axis and *n* mirror planes that contain it

C_{nv} Groups have no inversion center or $\perp C_2$ axes

•
$$C_{2v}$$
: E, $C_2(z)$, $\sigma_v(xz)$, $\sigma'_v(yz)$,

•
$$C_{3v}$$
: E, C_3 , C_3^2 , $3\sigma_v$

• The water and ammonia molecules are respective examples of $C_{2\nu}$ and $C_{3\nu}$ symmetry

$C_{n\nu}$ Groups These have a principal *n*-fold rotation axis and *n* mirror planes that contain it

C_{nv} Groups have no inversion center or $\perp C_2$ axes

•
$$C_{2v}$$
: E, $C_2(z)$, $\sigma_v(xz)$, $\sigma'_v(yz)$,

• C_{3v} : *E*, *C*₃, *C*₃², $3\sigma_v$

• The water and ammonia molecules are respective examples of $C_{2\nu}$ and $C_{3\nu}$ symmetry

C_{nv} Groups These have a principal *n*-fold rotation axis and *n* mirror planes that contain it

C_{nv} Groups have no inversion center or $\perp C_2$ axes

•
$$C_{2v}$$
: E, $C_2(z)$, $\sigma_v(xz)$, $\sigma'_v(yz)$,

•
$$C_{3v}$$
: E, C_3 , C_3^2 , $3\sigma_v$

• The water and ammonia molecules are respective examples of $C_{2\nu}$ and $C_{3\nu}$ symmetry

C_{nh} Groups These have a principal *n*-fold rotation axis and a \perp mirror plane

 C_{nh} Groups may have an inversion center or improper rotation axes

- C_{2h}: E, C₂, i, σ_h,
- *trans*-2-butene is an example of C_{2h} symmetry

C_{nh} Groups These have a principal *n*-fold rotation axis and a \perp mirror plane

C_{nh} Groups may have an inversion center or improper rotation axes

- C_{2h} : E, C_2 , i, σ_h ,
- *trans*-2-butene is an example of C_{2h} symmetry

Other Important Point Groups

• Linear molecules: $C_{\infty v}$, $D_{\infty h}$

 Molecules with multiple higher-order rotation axes, the cubic groups T, T_h, T_d, O, O_h

Other Important Point Groups

- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- Molecules with multiple higher-order rotation axes, the cubic groups T, T_h, T_d, O, O_h

Symmetry and Point Group Tutorial Visit the reciprocal net web site and complete the tutorial

• Click on Reciprocal Net

• Make sure you know the point groups for the five "Platonic Solids"

Symmetry and Point Group Tutorial Visit the reciprocal net web site and complete the tutorial

- Click on Reciprocal Net
- Make sure you know the point groups for the five "Platonic Solids"

