## Point Groups

## Christopher C. Cummins

Massachusetts Institute of Technology
ccummins@mit.edu

## Outline

(1) Groups
(2) Types of Point Groups

## Four Defining Properties of a Group

(1) The product of any two elements in the group and the square of each element must be an element in the group
(2) One element in the group must commute with all others and leave them unchanged
(3) The associative law of multiplication must hold

- Every element must have a reciprocal, which is also an element of the group


## Four Defining Properties of a Group

(1) The product of any two elements in the group and the square of each element must be an element in the group
(2) One element in the group must commute with all others and leave them unchanged
(3) The associative law of multiplication must hold
( - Every element must have a reciprocal, which is also an element of the group

## Four Defining Properties of a Group

(1) The product of any two elements in the group and the square of each element must be an element in the group
(2) One element in the group must commute with all others and leave them unchanged
(3) The associative law of multiplication must hold

- Every element must have a reciprocal, which is also an element of the group


## Four Defining Properties of a Group

(1) The product of any two elements in the group and the square of each element must be an element in the group
(2) One element in the group must commute with all others and leave them unchanged
(3) The associative law of multiplication must hold
(3) Every element must have a reciprocal, which is also an element of the group

## Molecular Symmetry Groups

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry operations generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"


## Molecular Symmetry Groups

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry operations generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"


## Molecular Symmetry Groups

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry operations generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"


## Molecular Symmetry Groups

- By inspection, make a complete list of the symmetry elements possessed by a given molecule
- Then, make a complete list of the symmetry operations generated by each of these elements
- Recognize that this complete list of symmetry operations satisfies the four criteria of a mathematical group
- Recognize that all molecules having this same list of symmetry elements belong to the same symmetry or "Point Group"


## Nonaxial Groups

## Groups and their Operations

- $C_{1}: E$
- $C_{s}: E, \sigma_{h}$
- $C_{i}: E, i$
- Note that each Point Group is referred to by its label, e.g. $C_{s}$

Massachusetts

## Nonaxial Groups

## Groups and their Operations

- $C_{1}: E$
- $C_{s}: E, \sigma_{h}$
- $C_{i}: E_{,} i$
- Note that each Point Group is referred to by its label, e.g. $C_{s}$

Massachusetts

## Nonaxial Groups

## Groups and their Operations

- $C_{1}: E$
- $C_{s}: E, \sigma_{h}$
- $C_{i}: E, i$
- Note that each Point Group is referred to by its label, e.g. $C_{s}$

Massachusetts

## Nonaxial Groups

## Groups and their Operations

- $C_{1}: E$
- $C_{s}: E, \sigma_{h}$
- $C_{i}: E, i$
- Note that each Point Group is referred to by its label, e.g. $C_{s}$


## Groups with a Single Principal Rotation Axis

```
The C}\mp@subsup{C}{n}{}\mathrm{ Groups
    - C2: E, C2
    - An example is HOOH in its equilibrium conformation
    - C}\mp@subsup{C}{3}{}:E,\mp@subsup{C}{3}{},\mp@subsup{C}{3}{}\mp@subsup{}{}{2
    - An example is a particular conformation of B(OH)
    - The C}\mp@subsup{C}{n}{}\mathrm{ groups other than }\mp@subsup{C}{1}{}\mathrm{ have only the identity and a
        single principal rotation axis as elements of symmetry
    - The C }\mp@subsup{C}{n}{}\mathrm{ groups correspond to n-bladed propellor shapes
        lacking top-bottom symmetry
```


## Groups with a Single Principal Rotation Axis

The $C_{n}$ Groups

- $C_{2}: E, C_{2}$
- An example is HOOH in its equilibrium conformation
- $C_{3}: E, C_{3}, C_{3}{ }^{2}$
- An example is a particular conformation of $\mathrm{B}(\mathrm{OH})_{3}$
- The $C_{n}$ groups other than $C_{1}$ have only the identity ard a single principal rotation axis as elements of symmetry
- The $C_{n}$ groups correspond to $n$-bladed propellor shapes lacking top-bottom symmetry


## Groups with a Single Principal Rotation Axis

## The $C_{n}$ Groups

- $C_{2}: E, C_{2}$
- An example is HOOH in its equilibrium conformation
- $C_{3}: E, C_{3}, C_{3}{ }^{2}$
- An example is a particular conformation of $\mathrm{B}(\mathrm{OH})_{3}$
- The $C_{n}$ groups other than $C_{1}$ have only the identity and a single principal rotation axis as elements of symmetry
- The $C_{n}$ groups correspond to $n$-bladed propellor shapes lacking top-bottom symmetry


## Groups with a Single Principal Rotation Axis

## The $C_{n}$ Groups

- $C_{2}: E, C_{2}$
- An example is HOOH in its equilibrium conformation
- $C_{3}: E, C_{3}, C_{3}{ }^{2}$
- An example is a particular conformation of $\mathrm{B}(\mathrm{OH})_{3}$
- The $C_{n}$ groups other than $C_{1}$ have only the identity and a single principal rotation axis as elements of symmetry
- The $C_{n}$ groups correspond to $n$-bladed propellor shapes lacking top-bottom symmetry


## Groups with a Single Principal Rotation Axis

## The $C_{n}$ Groups

- $C_{2}: E, C_{2}$
- An example is HOOH in its equilibrium conformation
- $C_{3}: E, C_{3}, C_{3}{ }^{2}$
- An example is a particular conformation of $\mathrm{B}(\mathrm{OH})_{3}$
- The $C_{n}$ groups other than $C_{1}$ have only the identity and a single principal rotation axis as elements of symmetry


## - The $C_{n}$ groups correspond to n-bladed propellor shapes lacking top-bottom symmetry

## Groups with a Single Principal Rotation Axis

## The $C_{n}$ Groups

- $C_{2}: E, C_{2}$
- An example is HOOH in its equilibrium conformation
- $C_{3}: E, C_{3}, C_{3}{ }^{2}$
- An example is a particular conformation of $\mathrm{B}(\mathrm{OH})_{3}$
- The $C_{n}$ groups other than $C_{1}$ have only the identity and a single principal rotation axis as elements of symmetry
- The $C_{n}$ groups correspond to $n$-bladed propellor shapes lacking top-bottom symmetry


## $D_{n}$ Groups

These have a principal $n$-fold rotation axis and $n \perp C_{2}$ axes
$D_{n}$ Groups have no mirror planes or inversion centers

- $D_{2}: E, C_{2}(z), C_{2}(y), C_{2}(x)$,
- $D_{3}: E, C_{3}, C_{3}^{2}, 3 C_{2}$
- The $D_{n}$ groups correspond to $n$-bladed propellor shapes


## $D_{n}$ Groups

These have a principal $n$-fold rotation axis and $n \perp C_{2}$ axes
$D_{n}$ Groups have no mirror planes or inversion centers

- $D_{2}: E, C_{2}(z), C_{2}(y), C_{2}(x)$,
- $D_{3}: E, C_{3}, C_{3}{ }^{2}, 3 C_{2}$
- The $D_{n}$ groups correspond to $n$-bladed propellor shapes


## $D_{n}$ Groups

These have a principal $n$-fold rotation axis and $n \perp C_{2}$ axes
$D_{n}$ Groups have no mirror planes or inversion centers

- $D_{2}: E, C_{2}(z), C_{2}(y), C_{2}(x)$,
- $D_{3}: E, C_{3}, C_{3}{ }^{2}, 3 C_{2}$
- The $D_{n}$ groups correspond to $n$-bladed propellor shapes


## $C_{n v}$ Groups

These have a principal $n$-fold rotation axis and $n$ mirror planes that contain it
$C_{n v}$ Groups have no inversion center or $\perp C_{2}$ axes

- $C_{2 v}: E, C_{2}(z), \sigma_{v}(x z), \sigma_{v}^{\prime}(y z)$,
- $C_{3 v}: E, C_{3}, C_{3}{ }^{2}, 3 \sigma_{v}$
- The water and ammonia molecules are respective examples of $C_{2 v}$ and $C_{3 v}$ symmetry


## $C_{n v}$ Groups

These have a principal $n$-fold rotation axis and $n$ mirror planes that contain it
$C_{n v}$ Groups have no inversion center or $\perp C_{2}$ axes

- $C_{2 v}: E, C_{2}(z), \sigma_{v}(x z), \sigma_{v}^{\prime}(y z)$,
- C 3v $: E, C_{3}, C_{3}{ }^{2}, 3 \sigma_{v}$
- The water and ammonia molecules are respective examples of $C_{2 v}$ and $C_{3 v}$ symmetry


## $C_{n v}$ Groups

These have a principal $n$-fold rotation axis and $n$ mirror planes that contain it
$C_{n v}$ Groups have no inversion center or $\perp C_{2}$ axes

- $C_{2 v}: E, C_{2}(z), \sigma_{v}(x z), \sigma_{v}^{\prime}(y z)$,
- $C_{3 v}: E, C_{3}, C_{3}{ }^{2}, 3 \sigma_{v}$
- The water and ammonia molecules are respective examples of $C_{2 v}$ and $C_{3 v}$ symmetry


## $C_{n h}$ Groups

These have a principal $n$-fold rotation axis and a $\perp$ mirror plane
$C_{n h}$ Groups may have an inversion center or improper rotation axes

- $C_{2 h}: E, C_{2}, i, \sigma_{h}$,
- trans-2-butene is an example of $C_{2 h}$ symmetry


## $C_{n h}$ Groups

These have a principal $n$-fold rotation axis and a $\perp$ mirror plane
$C_{n h}$ Groups may have an inversion center or improper rotation axes

- $C_{2 h}: E, C_{2}, i, \sigma_{h}$,
- trans-2-butene is an example of $C_{2 h}$ symmetry


## Other Important Point Groups

- Linear molecules: $C_{\infty v}, D_{\infty h}$
- Molecules with multiple higher-order rotation axes, the cubic groups $T, T_{h}, T_{d}, O, O_{h}$


## Other Important Point Groups

- Linear molecules: $C_{\infty v}, D_{\infty h}$
- Molecules with multiple higher-order rotation axes, the cubic groups $T, T_{h}, T_{d}, O, O_{h}$


## Symmetry and Point Group Tutorial Visit the reciprocal net web site and complete the tutorial

- Click on Reciprocal Net
- Make sure you know the point groups for the five "Platonic Solids"


## Symmetry and Point Group Tutorial Visit the reciprocal net web site and complete the tutorial

- Click on Reciprocal Net
- Make sure you know the point groups for the five "Platonic Solids"

