What is a "Point Group"?

Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)
- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}

The Platonic Solids: Polyhedra with Regular Polygon Faces Symmetry lowered from the sphere, but still present are multiple higher-order axes

Tetrahedron

Octahedron

Cube

Icosahedron

Dodecahedron

High Symmetry Groups

These have multiple higher order $(n>2)$ rotation axes. Example: C_{60}, icosahedral

$Q \curvearrowright$

High Symmetry Groups

These have multiple higher order $(n>2)$ rotation axes. Example: $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$, icosahedral
\square Show All Proper
\square Show All Improper
$\square \mathrm{C}_{5}$ axis Rotate$\square \mathrm{C}_{3}$ axisC_{2} axisC_{2} axis
$\square \mathrm{C}_{2}$ axis

Element Operation

\square Show All	nes
\square inv ctr	Invert
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect
\square plane (σ)	Reflect

High Symmetry Groups

The tetrahedron has four C_{3} axes but lacks inversion center

High Symmetry Groups

The group T_{h} has four C_{3} axes (through octahedral faces) and adds the inversion center
Home Tutorial Gallery Challenge

High Symmetry Groups
The group T is a pure rotation group with no mirror planes or inversion centers

High Symmetry Groups

The group O_{h} has three C_{4} axes and an inversion center: $\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]^{2-}$

High Symmetry Groups

The group O_{h} has three C_{4} axes and an inversion center: SF_{6}

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

- The identity only, C_{1}
- The identity plus one mirror plane: C_{s}
- The identity plus an inversion center: C_{i}

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

- The identity only, C_{1}
- The identity plus one mirror plane: C_{s}
- The identity plus an inversion center: C_{i}

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

- The identity only, C_{1}
- The identity plus one mirror plane: C_{S}
- The identity plus an inversion center: C_{i}

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

Linear Molecules

Distinguish based upon presence or absence of $\perp C_{2}$ axes

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}=\mathrm{N}=\mathrm{O}$, the two ends are different so no $C_{2} \perp$ to the C_{∞}, the point group assignment is $C_{\infty v}$
- Carbon dioxide, $\mathrm{CO}_{2}, \mathrm{O}=\mathrm{C}=\mathrm{O}$, the two ends are "symmetry related" and exchangeable by $\perp C_{2}$ or by σ_{h} so the point group assignment is $D_{\infty h}$
- In general, D groups have $n C_{2}$ axes \perp to the C_{n} (single principal rotation axis)

Linear Molecules

Distinguish based upon presence or absence of $\perp C_{2}$ axes

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}=\mathrm{N}=\mathrm{O}$, the two ends are different so no $C_{2} \perp$ to the C_{∞}, the point group assignment is $C_{\infty v}$
- Carbon dioxide, $\mathrm{CO}_{2}, \mathrm{O}=\mathrm{C}=\mathrm{O}$, the two ends are "symmetry related" and exchangeable by $\perp C_{2}$ or by σ_{h} so the point group assignment is $D_{\infty h}$
- In general, D groups have $n C_{2}$ axes \perp to the C_{n} (single principal rotation axis)

Linear Molecules

Distinguish based upon presence or absence of $\perp C_{2}$ axes

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}=\mathrm{N}=\mathrm{O}$, the two ends are different so no $C_{2} \perp$ to the C_{∞}, the point group assignment is $C_{\infty v}$
- Carbon dioxide, $\mathrm{CO}_{2}, \mathrm{O}=\mathrm{C}=\mathrm{O}$, the two ends are "symmetry related" and exchangeable by $\perp C_{2}$ or by σ_{h} so the point group assignment is $D_{\infty h}$
- In general, D groups have $n C_{2}$ axes \perp to the C_{n} (single principal rotation axis)

Linear Molecules

Distinguish based upon presence or absence of $\perp C_{2}$ axes

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}=\mathrm{N}=\mathrm{O}$, the two ends are different so no $C_{2} \perp$ to the C_{∞}, the point group assignment is $C_{\infty v}$
- Carbon dioxide, $\mathrm{CO}_{2}, \mathrm{O}=\mathrm{C}=\mathrm{O}$, the two ends are "symmetry related" and exchangeable by $\perp C_{2}$ or by σ_{h} so the point group assignment is $D_{\infty h}$
- In general, D groups have $n C_{2}$ axes \perp to the C_{n} (single principal rotation axis)

Examples of C groups

A single C_{n} plus n vertical mirror planes

Examples of C groups

A single C_{n} plus n vertical mirror planes

Examples of C groups

A single C_{n} plus a horizontal mirror plane

Examples of C groups

A single C_{2} with no mirror planes: ansa metallocene example of point group C_{2}

Examples of D groups

$D_{n h}$ has $n C_{2} \perp$ to the C_{n}, plus a σ_{h}

Examples of D groups

$D_{n h}$ has $n C_{2} \perp$ to the C_{n}, plus a σ_{h}

Examples of D groups

$D_{n d}$ has $n C_{2} \perp$ to the C_{n}, plus $n \sigma_{d}$ but no σ_{h}; example is $\mathrm{S}_{4} \mathrm{~N}_{4}$

Examples of D groups

$D_{n d}$ has $n C_{2} \perp$ to the C_{n}, plus $n \sigma_{d}$ but no σ_{h}; example is S_{8}

Examples of D groups

D_{n} has $n C_{2} \perp$ to the C_{n}, but no mirror planes; example is $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
Home \quad Tutorial \quad Gallery Challenge

Example of S_{n} groups

S_{n} only for $n=2,4,6, \ldots$ but note, $S_{2}=$ inversion so that is C_{i}

Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}
- High symmetry, multiple higher-order $(n>2)$ rotation axes. Examples: T_{d}, I_{h}, O_{h}
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_{1}, C_{s}, C_{i}
- Linear molecules: $C_{\infty v}, D_{\infty h}$
- C groups: $C_{n v}, C_{n h}, C_{n}$
- D groups: $D_{n d}, D_{n h}, D_{n}$
- S groups: S_{4}, S_{6}, S_{8}, etc.; only operations present are based upon S_{n}

