

• A classification scheme for finite objects (molecules)

- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations "belong to" the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

The Platonic Solids: Polyhedra with Regular Polygon Faces Symmetry lowered from the sphere, but still present are multiple higher-order axes

High Symmetry Groups These have multiple higher order (n > 2) rotation axes. Example: C₆₀, icosahedral

Home Tutorial Gallery Challenge Info Feedback		
	Element Operation	Element Operation
	Show All Proper	Show All Planes
	Show All Improper	inv ctr Invert
	C ₅ axis Rotate	plane (σ) Reflect
	C ₅ axis Rotate	plane (σ) Reflect
	C ₅ axis Rotate	plane (σ) Reflect
	C ₅ axis Rotate	plane (σ) Reflect
	C ₅ axis Rotate	plane (σ) Reflect
	C ₅ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	_ plane (σ) Reflect
	C ₃ axis Rotate	
	C ₂ axis Rotate	
	C2 axis Rotate	
	C2 axis Rotate	
	C ₂ axis Rotate	
	C2 axis Rotate	
Point Group = I _h JSmol	C ₂ axis Rotate)

High Symmetry Groups

These have multiple higher order (n > 2) rotation axes. Example: $[B_{12}H_{12}]^{2-}$, icosahedral

High Symmetry Groups The tetrahedron has four C_3 axes but lacks inversion center

High Symmetry Groups The group T_h has four C_3 axes (through octahedral faces) and adds the inversion center

High Symmetry Groups The group T is a pure rotation group with no mirror planes or inversion centers

High Symmetry Groups The group O_h has three C_4 axes and an inversion center: $[Mo_6Cl_{14}]^{2-1}$

High Symmetry Groups The group O_h has three C_4 axes and an inversion center: SF₆

• The identity only, C_1

- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i

- The identity only, C_1
- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i

- The identity only, C_1
- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

• A linear molecule has a C_{∞} axis of rotation

- Nitrous oxide, N₂O, N=N=O, the two ends are different so no $C_2 \perp$ to the C_{∞} , the point group assignment is $C_{\infty \nu}$
- Carbon dioxide, CO₂, O=C=O, the two ends are "symmetry related" and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, N₂O, N=N=O, the two ends are different so no $C_2 \perp$ to the C_{∞} , the point group assignment is $C_{\infty\nu}$
- Carbon dioxide, CO₂, O=C=O, the two ends are "symmetry related" and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, N₂O, N=N=O, the two ends are different so no $C_2 \perp$ to the C_{∞} , the point group assignment is $C_{\infty \nu}$
- Carbon dioxide, CO₂, O=C=O, the two ends are "symmetry related" and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)

- A linear molecule has a C_{∞} axis of rotation
- Nitrous oxide, N₂O, N=N=O, the two ends are different so no $C_2 \perp$ to the C_{∞} , the point group assignment is $C_{\infty \nu}$
- Carbon dioxide, CO₂, O=C=O, the two ends are "symmetry related" and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)

Examples of *C* groups A single C_n plus n vertical mirror planes

Examples of *C* groups A single C_n plus *n* vertical mirror planes

Examples of *C* groups A single C_n plus a horizontal mirror plane

Examples of C groups A single C_2 with no mirror planes: *ansa* metallocene example of point group C_2

局 ▶ ◀

⊒ ▶

Examples of D groups D_{nh} has $n C_2 \perp$ to the C_n , plus a σ_h

Examples of D groups D_{nh} has $n C_2 \perp$ to the C_n , plus a σ_h

Examples of D groups D_{nd} has $n C_2 \perp$ to the C_n , plus $n\sigma_d$ but no σ_h ; example is S₄N₄

Examples of D groups D_{nd} has $n C_2 \perp$ to the C_n , plus $n\sigma_d$ but no σ_h ; example is S_8

Examples of D groups D_n has $n C_2 \perp$ to the C_n , but no mirror planes; example is $[Fe(C_2O_4)_3]^{3-1}$

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv} , C_{nh} , C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

- High symmetry, multiple higher-order (n > 2) rotation axes.
 Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C₁, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd} , D_{nh} , D_n
- S groups: S₄, S₆, S₈, etc.; only operations present are based upon S_n

