What is a “Point Group”?
Point Group Definition

- A classification scheme for finite objects (molecules)
 - Molecules having the same set of symmetry elements/operations “belong to” the same point group
 - Point groups have labels we will learn
 - We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)
Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations “belong to” the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)
Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations “belong to” the same point group
- Point groups have labels we will learn
 - We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)
Point Group Definition

- A classification scheme for finite objects (molecules)
- Molecules having the same set of symmetry elements/operations “belong to” the same point group
- Point groups have labels we will learn
- We will use the Schoenflies notation (spectroscopy) rather than the Hermann-Mauguin notation (crystallography)
High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)

- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- C groups: \(C_{nv}, C_{nh}, C_n\)
- D groups: \(D_{nd}, D_{nh}, D_n\)
- S groups: \(S_4, S_6, S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order ($n > 2$) rotation axes. Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_1, C_s, C_i
 - Linear molecules: $C_{\infty v}$, $D_{\infty h}$
 - C groups: C_{nv}, C_{nh}, C_n
 - D groups: D_{nd}, D_{nh}, D_n
 - S groups: S_4, S_6, S_8, etc.; only operations present are based upon S_n
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d\), \(I_h\), \(O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1\), \(C_s\), \(C_i\)
- Linear molecules: \(C_{\infty v}\), \(D_{\infty h}\)
- C groups: \(C_{nv}\), \(C_{nh}\), \(C_n\)
- D groups: \(D_{nd}\), \(D_{nh}\), \(D_n\)
- S groups: \(S_4\), \(S_6\), \(S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- \(C\) groups: \(C_{nv}, C_{nh}, C_n\)
- \(D\) groups: \(D_{nd}, D_{nh}, D_n\)
- \(S\) groups: \(S_4, S_6, S_8,\) etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- C groups: \(C_{nv}, C_{nh}, C_n\)
- D groups: \(D_{nd}, D_{nh}, D_n\)
- S groups: \(S_4, S_6, S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order ($n > 2$) rotation axes. Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_1, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd}, D_{nh}, D_n
- S groups: S_4, S_6, S_8, etc.; only operations present are based upon S_n
The Platonic Solids: Polyhedra with Regular Polygon Faces

Symmetry lowered from the sphere, but still present are multiple higher-order axes.
High Symmetry Groups
These have multiple higher order \((n > 2)\) rotation axes. Example: \(C_{60}\), icosahedral.

Point Group = \(I_h\)
High Symmetry Groups
These have multiple higher order \((n > 2)\) rotation axes. Example: \([\text{B}_{12}\text{H}_{12}]^{2-}\), icosahedral.

Point Group = \(I_h\)

Inorganic Chemistry 5.03
High Symmetry Groups

The tetrahedron has four C_3 axes but lacks inversion center.
High Symmetry Groups

The group T_h has four C_3 axes (through octahedral faces) and adds the inversion center.
High Symmetry Groups
The group T is a pure rotation group with no mirror planes or inversion centers.
High Symmetry Groups

The group O_h has three C_4 axes and an inversion center: $[\text{Mo}_6\text{Cl}_{14}]^{2-}$
High Symmetry Groups
The group O_h has three C_4 axes and an inversion center: SF$_6$
Groups of Low Symmetry
The identity alone, or together with one mirror or an inversion center

- The identity only, C_1
- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i
Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

- The identity only, C_1
- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i
Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center

- The identity only, C_1
- The identity plus one mirror plane: C_s
- The identity plus an inversion center: C_i
Groups of Low Symmetry

The identity alone, or together with one mirror or an inversion center
Groups of Low Symmetry
The identity alone, or together with one mirror or an inversion center
A linear molecule has a C_∞ axis of rotation

- Nitrous oxide, N_2O, $N\equiv N\equiv O$, the two ends are different so no $C_2 \perp$ to the C_∞, the point group assignment is $C_{\infty v}$
- Carbon dioxide, CO_2, $O\equiv C\equiv O$, the two ends are “symmetry related” and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)
A linear molecule has a C_∞ axis of rotation

Nitrous oxide, N_2O, $\text{N}=$N$=$O, the two ends are different so no $C_2 \perp$ to the C_∞, the point group assignment is $C_{\infty v}$

Carbon dioxide, CO_2, O$=$C$=$O, the two ends are “symmetry related” and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$

In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)
A linear molecule has a C_∞ axis of rotation

Nitrous oxide, N_2O, $\text{N}=\text{N}=\text{O}$, the two ends are different so no $C_2 \perp$ to the C_∞, the point group assignment is $C_{\infty v}$

Carbon dioxide, CO_2, $\text{O}=\text{C}=\text{O}$, the two ends are “symmetry related” and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$

In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)
A linear molecule has a C_∞ axis of rotation

- Nitrous oxide, N_2O, $\text{N}≡\text{N}≡\text{O}$, the two ends are different so no $C_2 \perp$ to the C_∞, the point group assignment is $C_\infty v$
- Carbon dioxide, CO_2, $\text{O}=\text{C}=\text{O}$, the two ends are “symmetry related” and exchangeable by $\perp C_2$ or by σ_h so the point group assignment is $D_{\infty h}$
- In general, D groups have nC_2 axes \perp to the C_n (single principal rotation axis)
Examples of C groups

A single C_n plus n vertical mirror planes

Point Group = C_{2v}
Examples of C groups
A single C_n plus n vertical mirror planes

Point Group = C_{4v}
Examples of C_n groups
A single C_n plus a horizontal mirror plane

Point Group = C_{3h}
Examples of C groups

A single C_2 with no mirror planes: ansa metallocene example of point group C_2
Examples of D groups

D_{nh} has n $C_2 \perp$ to the C_n, plus a σ_h.
Examples of D groups

D_{nh} has $n \ C_2 \perp$ to the C_n, plus a σ_h
Examples of D groups

D_{nd} has $n \ C_2 \perp$ to the C_n, plus $n\sigma_d$ but no σ_h; example is S_4N_4.

Point Group = D2d
Examples of D groups

D_{nd} has $n C_2 \perp$ to the C_n, plus $n\sigma_d$ but no σ_h; example is S_8.
Examples of D groups

D_n has $n \ C_2 \perp$ to the C_n, but no mirror planes; example is $[\text{Fe}((\text{C}_2\text{O}_4)_3)]^{3-}$.
Example of S_n groups

S_n only for $n = 2, 4, 6, \ldots$ but note, $S_2 =\text{inversion}$ so that is C_i.
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d\), \(I_h\), \(O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1\), \(C_s\), \(C_i\)
- Linear molecules: \(C_{\infty v}\), \(D_{\infty h}\)
- \(C\) groups: \(C_{nv}\), \(C_{nh}\), \(C_n\)
- \(D\) groups: \(D_{nd}\), \(D_{nh}\), \(D_n\)
- \(S\) groups: \(S_4\), \(S_6\), \(S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups

Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order ($n > 2$) rotation axes. Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_1, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd}, D_{nh}, D_n
- S groups: S_4, S_6, S_8, etc.; only operations present are based upon S_n
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- C groups: \(C_{nv}, C_{nh}, C_n\)
- D groups: \(D_{nd}, D_{nh}, D_n\)
- S groups: \(S_4, S_6, S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order ($n > 2$) rotation axes. Examples: T_d, I_h, O_h
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: C_1, C_s, C_i
- Linear molecules: $C_{\infty v}$, $D_{\infty h}$
- C groups: C_{nv}, C_{nh}, C_n
- D groups: D_{nd}, D_{nh}, D_n
- S groups: S_4, S_6, S_8, etc.; only operations present are based upon S_n
Types of Point Groups

Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- C groups: \(C_{nv}, C_{nh}, C_n\)
- D groups: \(D_{nd}, D_{nh}, D_n\)
- S groups: \(S_4, S_6, S_8\), etc.; only operations present are based upon \(S_n\)
Types of Point Groups
Labels are the Schoenflies symbols: here are six limiting symmetry types

- High symmetry, multiple higher-order \((n > 2)\) rotation axes. Examples: \(T_d, I_h, O_h\)
- Low symmetry, only the identity or that plus only a single mirror plane or an inversion center: \(C_1, C_s, C_i\)
- Linear molecules: \(C_{\infty v}, D_{\infty h}\)
- C groups: \(C_{nv}, C_{nh}, C_n\)
- D groups: \(D_{nd}, D_{nh}, D_n\)
- S groups: \(S_4, S_6, S_8, \text{etc.}; \) only operations present are based upon \(S_n\)