Symmetry and Molecular Orbital Theory

◆□> <@> < E> < E> < E</p>

Some Considerations for Building Molecular Orbitals

- Molecular orbitals (MOs) are approximated as combinations of atomic orbitals (AOs)
- AOs have intrinsic energies reflected by their ease of ionization
- Lower energy orbitals are said to be more electronegative
- Valence Orbital Ionization Energy (VOIE) values a good place to start

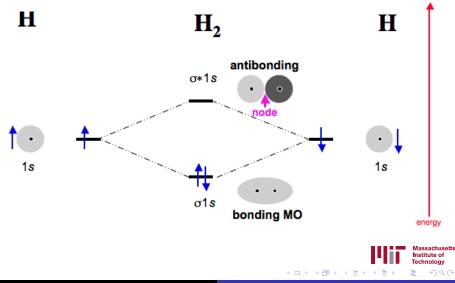
- Molecular orbitals (MOs) are approximated as combinations of atomic orbitals (AOs)
- AOs have intrinsic energies reflected by their ease of ionization
- Lower energy orbitals are said to be more electronegative
- Valence Orbital Ionization Energy (VOIE) values a good place to start

- Molecular orbitals (MOs) are approximated as combinations of atomic orbitals (AOs)
- AOs have intrinsic energies reflected by their ease of ionization
- Lower energy orbitals are said to be more electronegative
- Valence Orbital Ionization Energy (VOIE) values a good place to start

- Molecular orbitals (MOs) are approximated as combinations of atomic orbitals (AOs)
- AOs have intrinsic energies reflected by their ease of ionization
- Lower energy orbitals are said to be more electronegative

5.03

• Valence Orbital Ionization Energy (VOIE) values a good place to start


Valence Orbital Ionization Energies, eV

Atom	1 <i>s</i>	2 <i>s</i>	2 <i>p</i>
Н	13.6		
He	24.6		
Li		5.4	
Be		9.3	
В		14.0	8.3
С		19.4	10.6
Ν		25.6	13.2
0		32.3	15.8
F		40.2	18.6
Ne		48.5	21.6

Massachusetts Institute of Technology

Molecular Orbitals of the H₂ Molecule

• For H₂ we have two AOs, χ_1 and χ_2

- Each MO, ϕ , will be approximated: $\phi = c_1 \chi_1 + c_2 \chi_2$
- By symmetry, the electrons have equal probability of being near either H
- $c_1^2 = c_2^2$
- $\therefore c_1 = \pm c_2$

- For H_2 we have two AOs, χ_1 and χ_2
- Each MO, ϕ , will be approximated: $\phi = c_1\chi_1 + c_2\chi_2$
- By symmetry, the electrons have equal probability of being near either H
- $c_1^2 = c_2^2$
- $\therefore c_1 = \pm c_2$

- For H_2 we have two AOs, χ_1 and χ_2
- Each MO, ϕ , will be approximated: $\phi = c_1 \chi_1 + c_2 \chi_2$
- By symmetry, the electrons have equal probability of being near either H
- $c_1^2 = c_2^2$
- $\therefore c_1 = \pm c_2$

- For H₂ we have two AOs, χ_1 and χ_2
- Each MO, ϕ , will be approximated: $\phi = c_1 \chi_1 + c_2 \chi_2$
- By symmetry, the electrons have equal probability of being near either H
- $c_1^2 = c_2^2$
- $\therefore c_1 = \pm c_2$

- For H₂ we have two AOs, χ_1 and χ_2
- Each MO, ϕ , will be approximated: $\phi = c_1 \chi_1 + c_2 \chi_2$

5.03

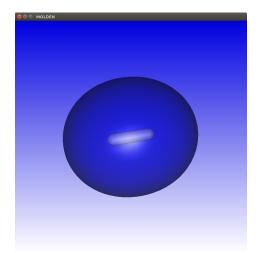
• By symmetry, the electrons have equal probability of being near either H

•
$$c_1^2 = c_2^2$$

•
$$\therefore c_1 = \pm c_2$$

• Bonding MOs are found at low energy

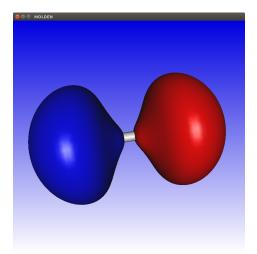
- Non-bonding or lone-pair MOs are at higher energy
- Antibonding MOs are usually vacant and at high energy
- Highest occupied MO (HOMO) is nucleophilic/Lewis basic
- Lowest unoccupied MO (LUMO) is electrophilic/Lewis acidic


- Bonding MOs are found at low energy
- Non-bonding or lone-pair MOs are at higher energy
- Antibonding MOs are usually vacant and at high energy
- Highest occupied MO (HOMO) is nucleophilic/Lewis basic
- Lowest unoccupied MO (LUMO) is electrophilic/Lewis acidic

- Bonding MOs are found at low energy
- Non-bonding or lone-pair MOs are at higher energy
- Antibonding MOs are usually vacant and at high energy
- Highest occupied MO (HOMO) is nucleophilic/Lewis basic
- Lowest unoccupied MO (LUMO) is electrophilic/Lewis acidic

- Bonding MOs are found at low energy
- Non-bonding or lone-pair MOs are at higher energy
- Antibonding MOs are usually vacant and at high energy
- Highest occupied MO (HOMO) is nucleophilic/Lewis basic
- Lowest unoccupied MO (LUMO) is electrophilic/Lewis acidic

- Bonding MOs are found at low energy
- Non-bonding or lone-pair MOs are at higher energy
- Antibonding MOs are usually vacant and at high energy
- Highest occupied MO (HOMO) is nucleophilic/Lewis basic
- Lowest unoccupied MO (LUMO) is electrophilic/Lewis acidic


Molecular Orbitals of the H₂ Molecule

The bonding MO (HOMO): $\phi = c_1\chi_1 + c_2\chi_2$

Molecular Orbitals of the H₂ Molecule

The antibonding MO (LUMO): $\phi = c_1\chi_1 - c_2\chi_2$

Bonding in the Water Molecule

- Just as in H₂, the two H atoms in $C_{2\nu}$ H₂O are equivalent by symmetry
- The two H atoms in H_2O are like a "stretched H_2 " interacting with an O atom
- We will classify the oxygen atomic orbitals according to their symmetry
- We will also find the symmetry types of the stretched H₂ molecule in the C_{2v} point group
- Only orbitals of the same symmetry may mix

- Just as in H₂, the two H atoms in $C_{2\nu}$ H₂O are equivalent by symmetry
- $\bullet\,$ The two H atoms in H_2O are like a "stretched H_2 " interacting with an O atom
- We will classify the oxygen atomic orbitals according to their symmetry
- We will also find the symmetry types of the stretched H₂ molecule in the C_{2v} point group
- Only orbitals of the same symmetry may mix

- Just as in H₂, the two H atoms in $C_{2\nu}$ H₂O are equivalent by symmetry
- $\bullet\,$ The two H atoms in H_2O are like a "stretched H_2 " interacting with an O atom
- We will classify the oxygen atomic orbitals according to their symmetry
- We will also find the symmetry types of the stretched H₂ molecule in the C_{2v} point group
- Only orbitals of the same symmetry may mix

- Just as in H₂, the two H atoms in $C_{2\nu}$ H₂O are equivalent by symmetry
- $\bullet\,$ The two H atoms in H_2O are like a "stretched H_2 " interacting with an O atom
- We will classify the oxygen atomic orbitals according to their symmetry
- We will also find the symmetry types of the stretched H₂ molecule in the C_{2v} point group
- Only orbitals of the same symmetry may mix

- Just as in H₂, the two H atoms in $C_{2\nu}$ H₂O are equivalent by symmetry
- $\bullet\,$ The two H atoms in H_2O are like a "stretched H_2 " interacting with an O atom
- We will classify the oxygen atomic orbitals according to their symmetry
- We will also find the symmetry types of the stretched H₂ molecule in the C_{2v} point group
- Only orbitals of the same symmetry may mix

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	-1	$ \begin{array}{c} -1 \\ 1 \\ -1 \end{array} $	1	y, R_x	yz

• The oxygen 2s AO has A_1 symmetry

- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H_2 bonding orbital has A_1 symmetry
- The stretched H₂ antibonding orbital has B₂ symmetry

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	$^{-1}$	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	$-1\\-1\\1$	y, R_x	yz

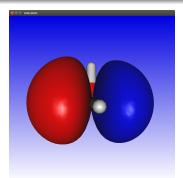
- The oxygen 2s AO has A_1 symmetry
- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H₂ bonding orbital has A₁ symmetry
- The stretched H₂ antibonding orbital has B₂ symmetry

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	$^{-1}$	-1	R_z	xy
$\bar{B_1}$			1	-1	x, R_y	xz
B_2	1	-1	-1	1	$\begin{array}{c} R_z \\ x, R_y \\ y, R_x \end{array}$	yz

- The oxygen 2s AO has A_1 symmetry
- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H₂ bonding orbital has A₁ symmetry
- The stretched H₂ antibonding orbital has B₂ symmetry

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	$^{-1}$	-1	R_z	xy
B_1	1	-1	-11	-1	x, R_y	xz
B_2	1	-1	-1	1	$R_z \\ x, R_y \\ y, R_x$	yz

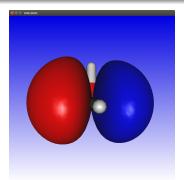
- The oxygen 2s AO has A_1 symmetry
- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H₂ bonding orbital has A₁ symmetry
- The stretched H₂ antibonding orbital has B₂ symmetry


C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	$^{-1}$	-1	R_z	xy
B_1	1	-1	-11	-1	x, R_y	xz
B_2	1	-1	-1	1	$R_z \\ x, R_y \\ y, R_x$	yz

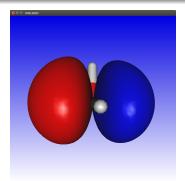
- The oxygen 2s AO has A_1 symmetry
- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H_2 bonding orbital has A_1 symmetry
- The stretched H₂ antibonding orbital has B₂ symmetry

C_{2v}	E	C_2	$\sigma_v(xz)$	$\sigma_{v}^{'}(yz)$		
			1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	$^{-1}$	-1	1	$\begin{array}{c} R_z \\ x, R_y \\ y, R_x \end{array}$	yz

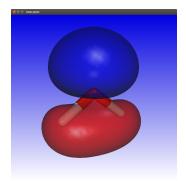
- The oxygen 2s AO has A_1 symmetry
- The oxygen $2p_x$ orbital has B_1 symmetry
- The oxygen $2p_y$ orbital has B_2 symmetry
- The oxygen $2p_z$ orbital has A_1 symmetry
- The stretched H_2 bonding orbital has A_1 symmetry
- The stretched H_2 antibonding orbital has B_2 symmetry


HOMO of the Water Molecule

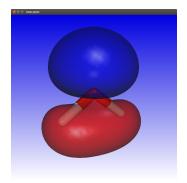
• The water HOMO has B₁ symmetry


- The water HOMO is a pure oxygen 2p_x orbital and does not have any contribution from H
- This lone-pair orbital is orthogonal to the molecular plane and is responsible for the basic/nucleophilic character of the water Massachused molecule

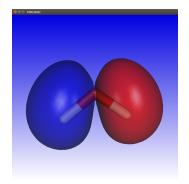
HOMO of the Water Molecule


- The water HOMO has B₁ symmetry
- The water HOMO is a pure oxygen $2p_x$ orbital and does not have any contribution from H
- This lone-pair orbital is orthogonal to the molecular plane and is responsible for the basic/nucleophilic character of the wate Massachuset molecule

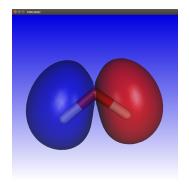
HOMO of the Water Molecule


- The water HOMO has B₁ symmetry
- The water HOMO is a pure oxygen $2p_x$ orbital and does not have any contribution from H
- This lone-pair orbital is orthogonal to the molecular plane and is responsible for the basic/nucleophilic character of the water assochaset molecule

HOMO-1 of the Water Molecule


- The water HOMO-1 has A₁ symmetry
- This is a bonding MO with the O 2p_z orbital mixing with the bonding MO of H₂

HOMO-1 of the Water Molecule


- The water HOMO-1 has A_1 symmetry
- This is a bonding MO with the O $2 \ensuremath{p_z}$ orbital mixing with the bonding MO of $\ensuremath{\text{H}_2}$

HOMO-2 of the Water Molecule

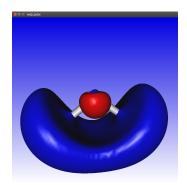
- The water HOMO-2 has B₂ symmetry
- This is a bonding MO with the O $2p_{\rm y}$ orbital mixing with the antibonding MO of $\rm H_2$

HOMO-2 of the Water Molecule

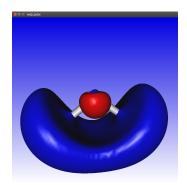
- The water HOMO-2 has B_2 symmetry
- This is a bonding MO with the O $2 p_y$ orbital mixing with the antibonding MO of ${\rm H_2}$

HOMO-3 of the Water Molecule

- The water HOMO-3 has A₁ symmetry
- This is a bonding MO with mostly O 2s AO character mixing a little with the bonding MO of H₂


5.03 Inorganic Chemistry

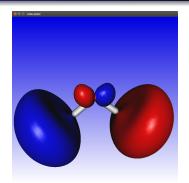
HOMO-3 of the Water Molecule


- The water HOMO-3 has A_1 symmetry
- This is a bonding MO with mostly O 2s AO character mixing a little with the bonding MO of H₂

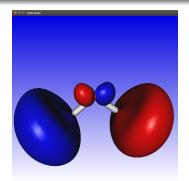
LUMO of the Water Molecule LUMO: Lowest unnocupied molecular orbital


- The water LUMO has A_1 symmetry
- This is an antibonding MO involving the bonding MO of H₂
- This MO is responsible for the Lewis acid character of the water molecule

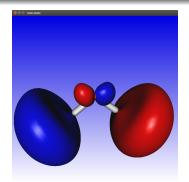
LUMO of the Water Molecule LUMO: Lowest unnocupied molecular orbital


- The water LUMO has A₁ symmetry
- This is an antibonding MO involving the bonding MO of H₂
- This MO is responsible for the Lewis acid character of the water molecule

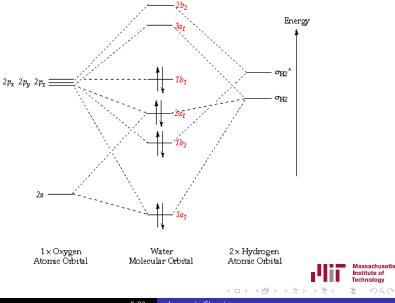
LUMO of the Water Molecule LUMO: Lowest unnocupied molecular orbital


- The water LUMO has A₁ symmetry
- This is an antibonding MO involving the bonding MO of H₂
- This MO is responsible for the Lewis acid character of the water molecule

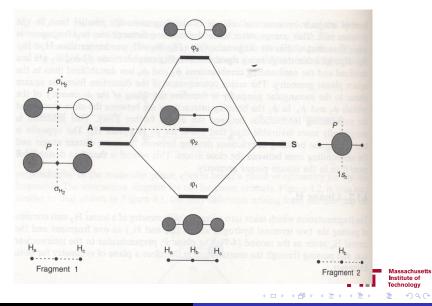
LUMO+1 of the Water Molecule


- The water LUMO+1 has B_2 symmetry
- This is an antibonding MO involving the antibonding MO of H₂ and the oxygen 2p_y AO
- It illustrates the idea that when the electronegativity difference between bonded atoms is large, the more electronegative partner will have bigger coefficients in the bonding MO, while the less electronegative present Našsachuset contributes more to the antibonding MO

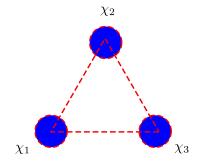
LUMO+1 of the Water Molecule


- The water LUMO+1 has B_2 symmetry
- This is an antibonding MO involving the antibonding MO of H₂ and the oxygen 2p_y AO
- It illustrates the idea that when the electronegativity difference between bonded atoms is large, the more electronegative partner will have bigger coefficients in the bonding MO, while the less electronegative participation Reserves contributes more to the antibonding MO

LUMO+1 of the Water Molecule

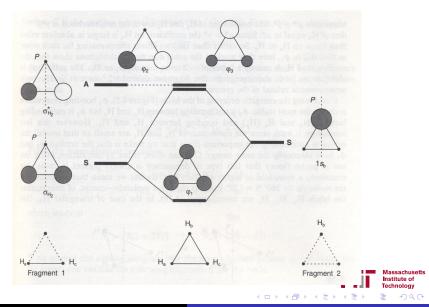


- The water LUMO+1 has B_2 symmetry
- This is an antibonding MO involving the antibonding MO of H₂ and the oxygen 2p_y AO
- It illustrates the idea that when the electronegativity difference between bonded atoms is large, the more electronegative partner will have bigger coefficients in the bonding MO, while the less electronegative partnets contributes more to the antibonding MO


MO Diagram for the Water Molecule

MO Diagram for Linear H_3 A fragment approach to deriving molecular orbitals

Symmetry Adapted Linear Combinations A case of three equivalent hydrogen 1s orbitals



1. Carry out group operations in D_{3h} 2. Note how many atoms are unshifted 3. Reduce the reducible representation

$$E, 2C_3, 3C_2, \sigma_h, 2S_3, 3\sigma_v$$

 $\Gamma \ 3 \ 0 \ 1 \ 3 \ 0 \ 1$
reduces to $A_1 + E'$

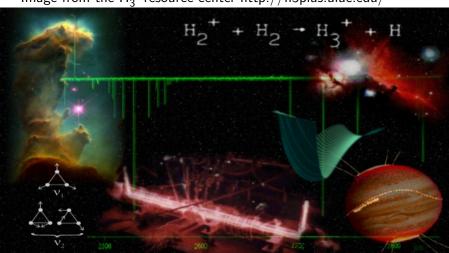
Symmetry Adapted Linear Combinations (SALCs) will be of the general form: $\phi = c_1\chi_1 + c_2\chi_2 + c_3\chi_3$

MO Diagram for Triangular H_3 A fragment approach to deriving molecular orbitals

Triangular H_3^+ in the Universe

- H_3^+ disovered by J. J. Thomson in 1911, an abundant ion by mass spectrometry
- 1961: Martin et al. suggested that H_3^+ may be present in interstellar space
- Tasheki Oka observed (1980) the ν₂ fundamental for H⁺₃; this is the E' vibration in D_{3h} symmetry
- 1996: H_3^+ first detected in the interstellar medium (ISM)
- The Central Molecular Zone (CMZ) contains H₃⁺ at concentrations a million times higher than the ISM

- H_3^+ disovered by J. J. Thomson in 1911, an abundant ion by mass spectrometry
- 1961: Martin et al. suggested that H_3^+ may be present in interstellar space
- Tasheki Oka observed (1980) the ν₂ fundamental for H⁺₃; this is the E' vibration in D_{3h} symmetry
- 1996: H_3^+ first detected in the interstellar medium (ISM)
- The Central Molecular Zone (CMZ) contains H₃⁺ at concentrations a million times higher than the ISM



- H_3^+ disovered by J. J. Thomson in 1911, an abundant ion by mass spectrometry
- 1961: Martin et al. suggested that H_3^+ may be present in interstellar space
- Tasheki Oka observed (1980) the ν₂ fundamental for H⁺₃; this is the E' vibration in D_{3h} symmetry
- 1996: H_3^+ first detected in the interstellar medium (ISM)
- The Central Molecular Zone (CMZ) contains H₃⁺ at concentrations a million times higher than the ISM

- H_3^+ disovered by J. J. Thomson in 1911, an abundant ion by mass spectrometry
- 1961: Martin et al. suggested that H_3^+ may be present in interstellar space
- Tasheki Oka observed (1980) the ν₂ fundamental for H⁺₃; this is the E' vibration in D_{3h} symmetry
- 1996: H_3^+ first detected in the interstellar medium (ISM)
- The Central Molecular Zone (CMZ) contains H₃⁺ at concentrations a million times higher than the ISM

- H_3^+ disovered by J. J. Thomson in 1911, an abundant ion by mass spectrometry
- 1961: Martin et al. suggested that H_3^+ may be present in interstellar space
- Tasheki Oka observed (1980) the ν₂ fundamental for H⁺₃; this is the E' vibration in D_{3h} symmetry
- 1996: H_3^+ first detected in the interstellar medium (ISM)
- The Central Molecular Zone (CMZ) contains H₃⁺ at concentrations a million times higher than the ISM

Image from the H_3^+ resource center http://h3plus.uiuc.edu/

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

H3+: The molecule that made the Universe

"There wouldn't be any star formation if there weren't molecules that slowly cool down the forming star by emitting light," said Michele Pavanello, who was a University of Arizona graduate student when he worked on the project. "Astronomers think that the only molecule that could cool down a forming star in that particular time is H_3^+ ."

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □