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APPENDIX 1: 
GROUP THEORY  

 
 Group theory is the mathematics of symmetry.  The significance of group theory for 
chemistry is that molecules can be categorized on the basis of their symmetry properties, which 
allow the prediction of many molecular properties.  The process of placing a molecule into a 
symmetry category involves identifying all of the lines, points, and planes of symmetry that it 
possesses; the symmetry categories the molecules may be assigned to are known as point groups.  
All linear molecules have an infinite number of symmetry elements (consider the planes of 
symmetry that contain the molecular axis, for instance).  However, it is easy to see that C2H2 and 
C2D2 have different symmetry properties than C2HD because they possess a plane of symmetry 
through the center of the molecule perpendicular to the axis whereas C2HD does not.  Linear 
molecules such as C2H2 and C2D2 that have a point of symmetry at the midpoint of the molecule 
belong to the point group called D∞h.  All other linear molecules, such as C2HD, belong to the 
point group C∞v. Tetrahedral molecules such as methane belong to the point group Td.  
 Molecular vibrations either conserve of break the various symmetry elements of the 
molecule.  For instance, some vibrational modes conserve all of the symmetry elements of the 
molecule (the ν1 and ν2 vibrational modes of acetylene, for example).  These vibrations are 
referred to as totally symmetric.  More generally, the various vibrational modes of a molecule 
can be categorized in terms of their behavior with respect to the symmetry elements of the 
molecule.  In fact, any motion of the molecule, including translations, rotations, and vibrations, 
can be categorized on this basis.  The categories to which these motions are assigned are called 
“irreducible representations”, or “irreps” for short.  The totally symmetric “irrep” is one 
example, which is designated by ∑+ for the C∞v point group and by ∑g+ for the D∞h point 
group. However, the C∞v and D∞h point groups have an infinite number of possible irreps.
 There are two major methods of determining which irreps the vibrational modes of a 
molecule correspond to.  The first is to use some advanced group theory techniques to predict 
from the symmetry of the molecule alone how many vibrational modes will exist, their 
degeneracies, and what irreps they correspond to.  If you know how to do this, great!  You can 
crank out the mathematics for all three of the molecules in an hour or two.  The other method is 
to do a normal mode analysis on the molecule which tells you what the vibrations look like.  You 
can then examine how each vibrational mode behaves with respect to the symmetry properties of 
the molecule and assign them to irreps on this basis.  You will notice that all of this has been 
done for you earlier in the manual. 
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 The most important application of group theory to this lab is that it allows you determine 
which vibrational transitions are allowed or forbidden on the basis of symmetry.  As discussed 
earlier, time-dependent quantum mechanics states that the transition probability between two 
quantum mechanical states can be described by an integral of the form ψm μ ψn , where n and 

m are the two quantum mechanical states and µ is the transition dipole operator.  In general, 
computing this integral is difficult, but there are a few conditions under which the integral is 
identically zero, and hence the transition is forbidden.  This is the origin of selection rules such 
as ∆v = ±1 for the harmonic oscillator.  Another set of selection rules derives from group theory; 
when the vibrational modes described by n and m belong to certain irreps, the integral goes to 
zero. 
 Group theory provides a quick method of determining whether a vibrational transition is 
allowed based on the symmetry of the molecule.  This method rests on the notion of the direct 
product.  Conceptually, you can think of the direct product as a process of multiplying irreps.  In 
particular, in order to determine if a vibrational transition is allowed, you must first take the 
direct product of the initial and final vibrational states.  Chapter 6 in Steinfeld (Ref. 5 above) 
provides a few rules for computing the relevant direct products.  One other useful rule is that the 
direct product of any irrep with the totally symmetric irrep is itself (analogous to multiplying by 
one).  For convenience, you may wish to complete the “direct product tables” on the following 
page. 
 Group theory can be used to demonstrate that vibrational transitions are symmetry 
allowed only when the direct product of the initial and final vibrational irreps is equal to (or 
contains) an irrep corresponding to a molecular transition (in the x, y, or z directions).  For the 
for the C∞v point group these irreps are ∑+ and ∏ and for the D∞h point group, ∑g+ and ∏u.  
Keep in mind that the ground vibrational state always corresponds to the totally symmetric irrep 
(think about it--if the atoms aren’t moving, all symmetry elements are conserved). Thus, you can 
determine almost at a glance which fundamentals and “subtraction” bands are allowed for each 
molecule.  To determine which combination bands are allowed, you need to know that the irrep 
corresponding to the excited state is the direct product of the irreps for the two vibrational modes 
involved. For the tetrahedral group Td, the linear dipole operators (x, y, z) belong to the 
irreducible representation F2, thus the vibrational modes that can absorb radiation if the molecule 
starts from the totally symmetric (A1) ground state must themselves have F2 symmetry.  (How do 
these results compare with the rule that vibrational transitions are allowed only if they involve an 
oscillating dipole moment?  These group theory rules are the generalization of this rule.  What 
are the advantages of the group theory formalism?) 
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Direct product table for the D∞h point group 
 

D∞h ∑g+ ∑u+ ∏g ∏u 

∑g+     

∑u+     

∏g     

∏u     

 
Direct product table for the C∞v point group 

C∞v ∑+ ∏ 

∑+   

∏   

 
Direct product table for the Td point group 

Td A1 A2 E F1 F2 

A1      

A2      

E      

F1      

F2      

 


