Nicotinamide Adenine Dinucleotide Cofactors

References: Two key reviews: Protein Dynamics in Enzyme Catalysis, S.J. Benkovic,
The Chemical Record 2, 24-36 (2002)

Two other papers on Dihydrofolate Reductase (DHFR) are Fierke et al, Biochemistry
1987, 26, 4085-92. This paper describes the steady state and pre-steady state kinetics

and the entire reaction coordinate of this protein. Kraut et al, Biochemistry, 1997, 36,
586-603 This paper describes the results from 100 crystal structures.

Review: Expanding the Genetic Code Chem Comm January 1-11 (2002). Gives an

excellent overview of the development of the technology that will in the not too distant

future allow us to put unnatural amino acids into any protein in vivo.
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Dihydrofolate Reductase (DHRF)

The Proposed Mechanism-

The mechanism shown below is based on ketone-enol tautomerization driven by the
dielectric constant of the active site. This is proposed to raise the pKa of Asp27 to 6.5,
however the enzyme is very pH sensitive and this proposed pKa is controversial. The

mechanism also depends on a structurally conserved water in the active site.
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The Topology of DHFR

Met 42

Met 20 Loop

Red indicates
conserved residues

Amide NH of G15 and E17 located in the Met20 loop form hydrogen bonds with D122

of the BF-BG loop. This loop interaction actively controls NADPH affinity and hydride
transfer rate.



Models for fast motions in DHFR

Occluded
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What has been learned from the many structures of DHFR

F-G loop

X-ray data from many structures and from different space groups were compared and 3
enzyme states were defines.

1) Open - Black ribbon, no substrate bound

2) Closed — green ribbon, Michaelis complex

3) Occluded - red ribbon, products or THF only complex
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Figure 1.1 A new methodology for the site-specific incorporation of unnatural amino acids
into proteins.
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discussed in the text.




Flavin References:

Flavins have been divided into four families based on structure and
sequence homology of short motifs: Protein Science 2001, 1712-1728.

Mechanism of amino acid oxidases and a good overview of flavin
chemistry: The Chemical Record 1 183-194 (2001)

Old Review articles that are excellent as the chemical possibilities

have been worked out from model studies many years ago:
Accounts of Chemical Research (1980) 13, 256-262 (Walsh) and 13,
148-155 (Bruice); J. Biol Chem 269, 2249-2262 (1994). |
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fig. 3. Topological diagram of FAD-binding domain of the four FAD-family folds. (A ) Rossmann
old (8« B,a,B5) adopted by the glutathione reductase (GR) family members. For a full description

»f this fold, it must be noted that there are two subfamilies, GR; and GR, (see text), and that there
ire exceptions to the generalizations described here. For example, D-amino acid oxidase of the GR,

;ubfamily is an exception to the rule that the FAD-binding fold in the GR family contains a 3-strand
-meander connecting B3 and 84; instead, it has a crossover a-helix. (B ) Ferredoxin reductase (FR)
amily fold adopting a cylindrical B-domain organized into two orthogonal sheets, ;8,85 and

33848¢. (C) The p -cresol methylhydroxylase (PCMH) family fold consists of two « + B subdomains;
ne is composed of three parallel B-strands (8, 3) and the second contains five antiparallel B-strands
R ¢) surrounded by e-helices. (D) The pyruvate oxidase (PO) family fold consists of five parallel
J-surands (B,_s) interspersed by a-helices similar to the double Rossmann fold found in
lehydrogenases. Cylinders represent a-helices and arrows denote B-strands. The location, indicated
n dashed lines , of the conserved sequence motifs in each of the FAD-family folds is listed in Table

http://www.proteinscience.org/cgi/content-nw/fuli/10/9/
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\n. 2. The FAD cofactor conformations. (4 ) An elongated conformation
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where the adenine ring is distal from the isoalloxazine

ng. The division between the component parts FMN and AMP composing the FAD is shown. The AMP is composed of an adenine
ng connected to a ribose that is connected to a phosphate group. The FMN moiety is composed of the isoalloxazine-flavin ring
nked to a ribitol, which is connected to a phosphate group. (B ) Bent conformation where the AMP portion is folded back, placing
\e adenine and isoalloxazine rings in close proximity. Variation in the proximity of the two rings determines the degree of cofactor

exibility. All atoms composing the FAD cofactor are labeled.
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Scheme 4. Resonance hybridization of anionic reduced flavin.
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A. Chemistry

'(1}11 Flavins can Emdergo either one electron or two electron reduction reactions.
ey thus play a pivotal role in accepting electrons from 2e” reductants (organic
compounds) and donate e-s to one e- oxidants (metal centers).
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(2)  While flavins are chemically reactive at multiple positions, enzymatically all

reactions thus far examined appear to involve either the Cda position or the N-5
position.

(3) Flavins are tightly bound (covalently (through C-8 to H, C, or Y) or non-
covalently, Kds are 107 to 10™) and thus be re-oxidized on the enzyme by either
oxygen or an ET protein.

(4)FADH?2 is rapidly reoxidized by O, regenerating H,0,. The non-enzymatic
reaction is almost as rapid as the enzymatic reaction. Ty is less than 1 sec.

(5) Flavins rapidly disproportionate in solution making kinetic studies complex:
FAD + FADH 2FADHe

(6) pKa of N-1is 6 to 7.

(7)The reduction potentials vary from —450 to +110 mv. The redox potential is
modulated by the protein environment. This contrasts with NAD where the
reduction potential is -320 mv. The reduction potentials use the biochemical
reference state at pH 7 and microM concentrations.
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- EWd Skelch of the dimeric enzyme glutathione reductase. The
FAD-, NADP- and interface-domains are outlined. The approxi-
mate view of Fig. | is indicated by anarrow. The general course
of the polypeptide chain is given by a dashed line. FAD and
NADP bind to their respective domains in an extended conforma-
tion. Except for the nicotinamide moiety, NADP can be described
as binding at the protein surface. In contrast, FAD binds at the
surface of the FAD-domain but at the boundary to the NADP-
domain, so that only the adenine moiety extends to the protein
surface. Oxidised glutathione (GSSG) binds between subunits.
There is a close contact between the Navin ring of one subunit and

the interface-domain of the other.
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Flavin monooxygenases are rare but serve as an excellent prototype for pterh m 380-385

dependent monooxygenases. The former require activation built into the aromatic

substrate (e.g. substrate hydroxylation), while the latter utilize metal cofactors and
don't require activated aromatic substrates.
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Intermediates I and TII are the C4a hydroperoxide and the Cda pseudobase:

Stopped flow kinetics experiments reveal the presence of three kinetically
competent intermediates in the flavin monooxygenease.
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@ Electron-proton-electron transfer mechanism
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Fig. 6. d-Leucine (red) binding mode in DAO-d-leucine complex model. Note that the lone pair orbital (green) of
the amino group of d-leucine overlaps with LUMO of flavin at C(4a) and thar the a-

hydrogen of d-leucine ap-
proaches the lone pair orbital (orange) of flavin N{5).
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