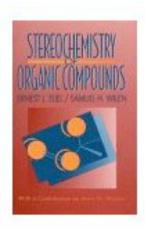
Massachusetts Institute of Technology Organic Chemistry 5.512

March 1, 2006 Prof. Rick L. Danheiser

Introduction: Strategies for Stereocontrolled Synthesis

★ Thermodynamic Control


Relative energy of diastereomers determines outcome of reaction

- I. What determines the relative energy of stereoisomers?
 - **☆ De-stabilizing Non-bonded Repulsion**
 - **☆ Stabilizing Non-covalent Interactions**
 - **☆ Stereoelectronic Effects**
 - * Deviation from optimal geometry for orbital overlap (angle strain)
 - * Destabilizing torsional interactions
 - * Stabilizing secondary orbital interactions
 - * Dipole-dipole interactions
- II. Tactics for establishing thermodynamic control

Reading on Stereochemical Principles

Carey and Sundberg "Advanced Organic Chemistry" Part A (2000) Chapters 2 and 3

E. L. Eliel and S. H. Wilen "Stereochemistry of Organic Compounds" (1994)

Course Syllabus

U	nit 1	Strategies	for	Stereocontrolled	Synthesis
---	-------	------------	-----	------------------	-----------

Unit 2 Stereocontrolled Alkylation

Unit 3 Stereocontrolled Conjugate Addition

Unit 4 Stereocontrolled 1,2 Addition to C=X Bonds

Unit 5 Addition of Allylmetals to Carbonyl Groups

Unit 6 Stereocontrolled Aldol Reactions

Unit 7 Stereocontrolled Carbonyl Reduction

Unit 8 Stereocontrolled Alkene Reduction

Unit 9 Stereocontrolled Hydroboration and Dihydroxylation

Unit 10 Stereocontrolled Epoxidation

epothilone A