Massachusetts Institute of Technology Organic Chemistry 5.512

March 21, 2007 Prof. Rick L. Danheiser

Unit 3 Stereocontrolled Conjugate Addition

- ★ Intrinisic Stereochemistry in the Michael Reaction
- ★ Substrate Control: Asymmetric Induction by Molecular Framework
- ★ Substrate Control: Asymmetric Induction via Chiral Auxiliaries
- ★ Catalytic Asymmetric Conjugate Addition I: Unstabilized Nucleophiles
- ★ Catalytic Asymmetric Conjugate Addition II: Conjugate Reduction
- ★ Catalytic Asymmetric Conjugate Addition III:

Stabilized Nucleophiles (Michael Additions)

Definitions

Conjugate Addition

Addition of a nucleophile to an alkene conjugated with an electron-withdrawing group

Michael Reaction

Addition of an enolate or related "stabilized" carbanionic species to an a,b-unsaturated carbonyl compound or related electron-deficient alkene or alkyne

General References

Conjugate Addition Reactions in Organic Synthesis", P. Perlmutter, Pergamon Press, 1992

Reviews:

"Enantioselective Conjugate Additions"; M. P. Sibi; S. Manyem *Tetrahedron* **2000**, *56*, 8033.

"Recent Advances in Catalytic Enantioselective Michael Additions";

N. Krause; A. Hoffmann-Röder Synthesis 2001, 171

Review Reading Assignment

Carey and Sundberg "Advanced Organic Chemistry" Part B

Section 1.10 (Alkylation of Carbon Nucleophiles by Conjugate Addition)

Section 7.3.1 (Organozinc Compounds)

Section 8.1 (Organocopper Intermediates)

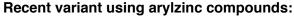
Section 9.1.1 (Synthesis of Organoboranes)

Chiral Auxiliaries: Conjugate Addition to α,β -Unsaturated Amides

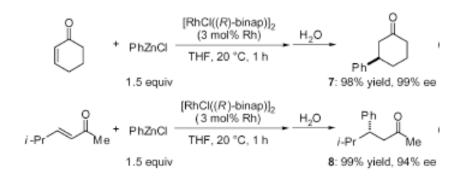
D. Badia et al. J. Org. Chem. 2006, 71, 7763

TABLE 3. Asymmetric Tandem Conjugate Addition/ α -Alkylation with α - β -Unsaturated Amides 1a-d

						yielda	
entry	enamide	product	R^1	\mathbb{R}^2	\mathbb{R}^3	(%)	$dr^{b,c}$
1	la	3a	Me	Ph	Me	77	93:4:3:<1
2	la	3b	Me	Ph	Et	96	95:5:<1:<1
3	la	3c	Me	Ph	allyl	70	93:4:2:1
4	la	3d	Me	Ph	Bn	78	94:4:<1:<1
5	la	3e	Me	n-Bu	Me	67	91:5:3:<1
6	la	3f	Me	n-Bu	Et	73	91:6:2:<1
7	la	3g	Me	n-Bu	allyl	71	86:10:4:<1
8	la	3h	Me	n-Bu	Bn	63	89:8:3:<1
9	1b	3i	Et	Ph	Me	75	95:4:<1:<1
10	1b	3j	Et	Ph	Et	80	97:2:<1:<1
11	1b	3k	Et	Ph	allyl	77	95:4:1:<1
12	1b	31	Et	Ph	Bn	67	99:<1:<1:<1
13	lc	3m	n-Pr	Ph	Me	86	99:<1:<1:<1
14	lc	3n	n-Pr	Ph	Et	82	95:4:1:<1
15	lc	30	n-Pr	Ph	allyl	70	96:4:<1:<1
16	lc	3р	n-Pr	Ph	Bn	73	>99:<1:<1:<1
17	lc	3q	n-Pr	n-Bu	allyl	77	96:3:<1:<1
18	1d	3r	t-Bu	Ph	Me	70	96:3:2:<1
19	1d	3s	t-Bu	n-Bu	Me	35	97:2:<1:<1
20	10		Ma	Dis	i De	~5d	


Hayashi-Miyaura Rh-Catalyzed Conjugate Addition Reactions

Reviews


T. Hayashi et al.

Chem. Rev. 2003, 103, 2829, Bull. Chem. Soc. Jpn. 2004, 77, 13, Modern Rhodium-Catalyzed Reactions, Evans, P. A., Ed., Wiley-VCH, 2005, pp 55-77

See also Org. Synth. 2002, 79, 84

Hayashi, T. et al. J. Am. Chem. Soc. 2004, 126, 6240

Recent variant using bicyclo[2.2.2]octadiene ligands:

Hayashi, T. et al. *J. Org. Chem.* **2005**, *70*, 2503; Carreira, E. M. *J. Am. Chem. Soc.* **2005**, *127*, 10,850; and refs cited therein.

Hayashi-Miyaura Rh-Catalyzed Conjugate Addition Reactions

Case Study

SmithKline Beecham Endothelin A receptor antagonist

N. Miyaura et al. Tetrahedron 2006, 62, 9610

(R,R)-chiraphos/[Rh(nbd)₂]BF₄