Strategies for Stereocontrolled Synthesis

Chemistry 5.512
Synthetic Organic Chemistry II

Lecture 3
March 5, 2007

Rick L. Danheiser
Massachusetts Institute of Technology

Strategies for Stereocontrolled Synthesis

★ Thermodynamic Control Strategies
★ Kinetic Control Strategies
★ Strategies for the Synthesis of Acyclic Target Molecules: Case Studies
 ✴ Glycinoeclepin A Intermediate (Danheiser)
 ✴ Prostaglandins from Sugars (Stork)
Strategies for Stereocontrolled Synthesis

General Strategies for the Stereocontrolled Synthesis of Acyclic Target Molecules

- Chiron Approach
- Ring Template Approach
- Chirality Transfer
- Acyclic Asymmetric Synthesis

Strategies for Stereocontrolled Synthesis

- Thermodynamic Control Strategies
- Kinetic Control Strategies
- **Strategies for the Synthesis of Acyclic Target Molecules: Case Studies**
 - Glycinoeclepin A Intermediate (Danheiser)
 - Prostaglandins from Sugars (Stork)
Strategies for Stereocontrolled Synthesis

General Strategies for the Stereocontrolled Synthesis of Acyclic Target Molecules

- Chiron Approach
- Ring Template Approach
- Chirality Transfer
- Acyclic Asymmetric Synthesis

Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

For discussions of the use of chiral natural products as starting materials for the synthesis of complex molecules, see
Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

G. Stork and S. Raucher
Department of Chemistry, Columbia University
New York, New York 10027
received December 8, 1975

Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)
Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars
(Gilbert Stork)

★ Install C-8 side chain by enolate alkylation
★ Thermodynamic control of stereochemistry at C-8

Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars
(Gilbert Stork)

★ Install C-8 side chain by enolate alkylation
★ Thermodynamic control of stereochemistry at C-8
★ [For PGF_{2\alpha}] C-9 stereochemistry by steric approach substrate control
Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars (Gilbert Stork)

★ Form cyclopentanone from acyclic precursor by nucleophilic cyclization

\[
\text{EWG}^+ \quad \text{or} \quad \text{RO}^+\n\]

New Subtargets

Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars (Gilbert Stork)

★ The “sugar connection”: requires translation of C-OH stereogenic centers into C-C centers

\[
\text{Sugars as starting materials}\]
Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars (Gilbert Stork)

★ Set C-12 stereochemistry by
chirality transfer via [3,3] sigmatropic rearrangement

Subtargets

Previous subtargets

New Subtargets

Retron for [3,3] sigmatropic shift: γ,δ-unsaturated carbonyl compound
Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars (Gilbert Stork)

★ Set C-12 stereochemistry by

chirality transfer via [3,3] sigmatropic rearrangement

![Diagram showing the stereochemical transformation of C-12 atoms.](image)

New Subtargets

![New subtargets diagram.](image)

Previous subtargets
Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

For \(\text{PGA}_2 \)

For \(\text{PGF}_{2\alpha} \)

D-Glycero-D-guloheptono-1,4-lactone
One step from D-glucose
Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

Total Synthesis of PGA₂

1 eq Et₃N
CH₂Cl₂ rt 1 h

1 eq K₂CO₃
MeOH rt 30 min
59% overall

2 eq
(MeO)₂C

95% 4 h

10 eq CH₂C(O.Me)₃
cat EtCO₂H
140° 72 h

83%

25% eq AcOH
120° 1 h

83%

Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

Total Synthesis of PGA₂

1) H₂, Pd-BaSO₄, MeOH
2) TsCl, pyr, -20°, 7 d
3) EVE

5 eq Bu₂CuLi
Et₂O, -40°, 2 h

5 eq K₂CO₃
MeOH
rt, 45 min

10 eq KOt-Bu
THF
16 steps in the longest linear sequence
Strategies for Stereocontrolled Synthesis

Case Studies
(2) Prostaglandins from Sugars (Stork)

Total Synthesis of PGF$_{2\alpha}$

![Chemical Structure and Synthesis Diagram]
Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

Total Synthesis of PGF$_{2\alpha}$

Strategies for Stereocontrolled Synthesis

Case Studies

(2) Prostaglandins from Sugars (Stork)

Total Synthesis of PGF$_{2\alpha}$
Strategies for Stereocontrolled Synthesis

[1,3] \(\text{O} \rightarrow \text{C} \) Chirality Transfer

\[
\begin{array}{c}
\text{R}^1 \text{R}^2 \text{Y}^1 \text{OH} \\
\text{X} \\
\text{Y}
\end{array}
\xrightarrow{\text{KH, CCl}_3, \text{CN}, \text{Et}_2\text{O}}
\begin{array}{c}
\text{R}^1 \text{R}^2 \text{CO}_2 \text{R} \\
\text{X} \\
\text{Y}
\end{array}
\]

[1,3] \(\text{O} \rightarrow \text{N} \) Chirality Transfer

\[
\begin{array}{c}
\text{R}^1 \text{R}^2 \text{Y}^1 \text{OH} \\
\text{X} \\
\text{Y}
\end{array}
\xrightarrow{140 \ ^\circ \text{C, xylene}}
\begin{array}{c}
\text{R}^1 \text{R}^2 \text{NR}_2 \\
\text{X} \\
\text{Y}
\end{array}
\]

Review of chirality transfer via sigmatropic rearrangements

Overman Rearrangement of Allylic Trihaloacetimidates

\[
\begin{array}{c}
\text{BnO} \text{CH}_2\text{OH} \\
\text{KH, CCl}_3, \text{CN, Et}_2\text{O}
\end{array}
\xrightarrow{140 \ ^\circ \text{C, xylene}}
\begin{array}{c}
\text{BnO} \text{CH}_2\text{HNCCl}_3 \\
\text{CCl}_3
\end{array}
\]

\[
\begin{array}{c}
\text{Bu} \text{CH}_2\text{OSiR}_3 \\
\text{1)} \text{DBU, CCl}_3, \text{CN, CH}_2\text{Cl}_2 \\
\text{2)} \% \text{PdCl}_2(\text{PhCN})_2, \text{benzene, rt}
\end{array}
\xrightarrow{72\%}
\begin{array}{c}
\text{Bu} \text{CH}_2\text{OSiR}_3 \\
\text{NHCCl}_3
\end{array}
\]