
V. Scattering  
 

a. Design of a scattering experiment  
 
Up to now, we have dealt primarily with systems where the goal was 
essentially to find the eigenvalues and eigenstates of some 
Hamiltonian.  This approach covers a vast amount of chemistry, but is 
not all-inclusive.  In practice, one often probes the character of a 
molecular system by performing a scattering experiment as depicted 
in generic fashion below: 
 
 
 
 
 
 
 
 
 
 
 
 
Here, there is a beam of particles incident on the “target” we are 
interested in and we have a detector that is able to sense the arrival 
of these particles once they have been deflected off the target.  It is 
assumed that the interaction between the particles and the target 
decays as a function of the distance between them (thus, harmonic 
interactions are out) and that the detector is far enough away that the 
interaction can be neglected by this point.  Our goal, of course, is to 
obtain information about the target from the angular distribution of 
scattered particles.  The paradigm is the search for steady states 
instead of the search for stationary states.  Also, note that the 
scattering off multiple targets (as might happen in a crystal) can be 
treated by repeated applications of the formalism we will develop. 
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b. Elastic Scattering  
 
At this point, most introductory texts neglect any internal structure of 
the incident particles (e.g. vibrational state, rotational state, spin, 
etc.).  The scattering is therefore elastic (i.e. no energy is absorbed 
by the incident particles).  In general, this approximation is not at all  
relevant to chemistry!  Typically, the incident beam consists of some 
molecules and the scattered beam consists of different molecules 
(reactive scattering) and/or the same molecules in different quantum 
states (inelastic scattering).   
 
Hence, we will be most interested in a formalism that goes beyond 
the standard treatment.  However, there are several aspects of the 
theory of elastic scattering that carry over to the more general case, 
and we touch on those now.  We will also assume that the particles 
interact with the target through a potential )(rV  to give the equations 
a concrete form. 
 

1. The Scattering Cross Section 
 
In general the thing we will be most interested in is the number of 
scattered particles, dn , per unit of incident particle flux, iF .  That is, 
we are interested in the ratio iFdn /  for a particular detector position. 
This is the analog of the “reaction probability”. Typically, we envision 
the detector as occupying an infinitesimal span of angles θd  and φd .  
Clearly, the number of particles sensed by the detector will be 
proportional to this angular area – bigger detectors will detect more 
particles. Hence, we can write 

( ) φθθφθσ ddFdn i sin,/ =  

where the constant of proportionality, ( )φθσ , , is called the differential 
cross section , and we have noted explicitly that it depends on θ  and 
φ .  We can also define the total cross section  by 

( )� � �== φθθφθσσ ddFdn sin,/  

The name “cross section” arises from the fact thatσ  has the 
dimensions of area and therefore represents the effective size of the 
target from the point of view of the incident particles – smaller cross 



sections mean less scattering which means an effectively smaller 
target. 

2. The Integral Equation 
 
In order to solve the scattering problem what we would really like is a 
way to transform the incoming wave into the scattered wave.  It turns 
out that the Green’s function  provides just such a transformation 
and hence we proceed to discuss it. 
 
It is useful to first define the Green’s operator for a given Ĥ .  
Essentially, we want something that takes any initial state and gives 
us back an eigenstate of energy E .  Formally, one might write 
something like this: 

( )
HE

EG
ˆ

1ˆ
−

= . 

This operator gives infinite weight to any state with eigenvalue E  and 
finite weight to all other states.  It is thus a “filter” that selects states 
that have the energy we are interested in.  However, the fact that this 
operator has some infinite eigenvalues poses some technical 
mathematical difficulties.  It turns out that this can be formally fixed by 
adding or subtracting a small imaginary part from the denominator 

( )
εiHE

EG
±−

=± ˆ
1ˆ  

These two operators are the Green’s operators for Ĥ . The small 
imaginary parts ensure that the Greens operator is never quite 
singular. At the end of the calculation, one always takes the limit 

0→ε  and so this small imaginary part never appears explicitly in any 
final result.   
 
The Green’s function is just the position representation of Green’s 
operator 

( ) r'rr'r
εiHE

EG
±−

=± ˆ
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,, . 

It satisfies the differential equation: 
( ) ( ) ( )',',ˆ rrrr −=− ± δEGHE  

where one implicitly takes the limit 0→ε  after  applying Ĥ .  These 
two operations do not commute, and so it is important to do them in 



the proper order.  This equation is just the way of saying, in position 
space, that ( )EG ,,r'r±  is the inverse of ( )HE ˆ− ; if we multiply them 
together, we get the identity ( ( )'rr −δ ). 
 
There are only a few Green’s functions that can be calculated exactly. 
The most useful Green’s function (GF) for scattering is the free 
particle GF. If we define 2

2
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ˆ ∇−≡H and 2kE ≡  then the appropriate 

GF, ( )EG ,,0 r'r± , is given by 
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We will not derive this result, but it is easy enough to show that (cf. 
CTDL 916) 

( ) ( ) ( )r'rr'r −=− ± δEGHE ,,ˆ
00 . 

This result immediately points out to us the significance of the sign of 
the small imaginary component; the positive and negative solutions 
correspond to waves propagating outward and inward, respectively.  
Only the outward propagating waves are appropriate for our 
scattering considerations, and so we choose the “+” Green’s function 
and denote it ( )EG ,,0 r'r  from this point on. 
 
We can use the free particle Green’s function to transform the 
incoming wave into the scattered wave.  Specifically, we presume the 
incoming wave is an eigenstate of 0Ĥ  (i.e. a plane wave traveling in 
the direction ik ).  Then the scattered wavefunction is given by 

( ) ( ) ( ) rdVEGei 3
0 ),,( r'r'r'rr rk i φφ �+= ⋅ . 

This is very easy to prove.  We want to verify that the above 
wavefunction is an eigenstate of )(ˆ

0 rVH + .  To show this, we operate 
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Which shows that the outgoing wavefunction is an eigenstate of 
)(ˆ

0 rVH +  with eigenvalue E .  This equation is more useful than the 
Schrodinger equation (which can also give an eigenstate of 
eigenvalue E ) because it naturally incorporates the correct boundary 
conditions (namely that the scattered state comes from a particular 
incident beam of particles). 
 
We now want to derive an expression for the cross section based on 
this form for the scattered wavefunction.  This involves some rather 
tedious algebra but there are two key steps 
 

1) One shows that in far away from the target, the scattered 
wavefunction looks like: 
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this is clearly the sum of a plane wave and a function 

proportional to 
r

eikr

 (called a free spherical wave).  The 

latter results only from particles scattering off the target. 
2)The cross section can be shown to be just the square 
modulus of the amplitude of the scattered wave: 
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This is shown by computing the probability flux (or current ) 
in the θ , φ  direction: 

( ) ( ) ( ) ( )( )rrrrJ ** φφφφ ∇+∇−= i  
Note that this is zero if the wavefunctions are real.  Also, 
although the letter J  is used for current and angular 
momentum, the two are unrelated. 
 

3. The Born Approximation 
 
We return to the integral equation for the scattered wavefunction: 

( ) ( ) ( ) rdVEGei 3
0 ),,( r'r'r'rr rk i φφ �+= ⋅ . 



We have seen how one can obtain the cross section once ( )rφ has 
been determined, but φ  appears on both  sides of this equation! This 
complicates the solution of this integral equation significantly. 
 
In practice, one follows an iterative route.  First, one assumes  

( ) 0=rφ .  Plugging this in on the right side of the equation gives 
( ) rk ir ⋅≈ ieφ  

then, one takes this apprimation to ( )rφ , and plugs it in on the right 
hand side again, 
 

( ) ( ) rdeVEGe 3
0 ),,( rikrik ii r'r'rr ⋅⋅

�+≈φ  

This gives us a slightly better approximation to ( )rφ , which we can 
immediately plug back in to the right hand side of the integral 
equation to obtain an even better approximation….   Of course, this is 
something that you never want to do yourself; you want to make a 
computer do it for you.  But it is a direct route to the exact solution of 
the problem.  Note that each successive iteration will involve one 
higher power of ( )rV .  Hence, this can be thought of as a perturbative 
expansion of the wavefunction in powers of the interaction ( )rV .  
Note that it is different than the perturbative expansions we have 
seen previously.  In practice, if one is forced to do such a calculation 
by hand, one stops at first order, which results in a scattering cross 
section 
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where, on the right hand side, we have defined the scattering 
wavevector fi kkK −= .  This approximation is called the Born 
approximation; it is rather simple to apply because all one needs to 
know is the Fourier transform of the potential.  It is not, however, 
particularly accurate. 

c. Inelastic Scattering  
 
For inelastic scattering,  we need to consider Hamiltonians of the 
form: 

( ) ( ) ( )βαβα ,,ˆˆˆ 2
2
1 rVhhH targetparticle +++∇−=  



where α and β denote all the relevant internal degrees of freedom of 
the incident particle and the target, respectively.  These might include 
tangible variables like the orientation of a molecular dipole moment, 
but more often we will be interested abstract degrees of freedom like 
the spin or the vibrational quantum number. Because it is difficult to 
describe an abstract degree of freedom (like spin) in real space, it is 
best to work in state space (i.e. the matrix representation) to treat 
inelastic scattering. 
 
We want to build the Green’s function for this Hamiltonian.  As was 
the case for elastic scattering, we do this by identifying the part of Ĥ  
that we can solve and then doing a perturbative expansion in the rest.  
So we define 

( ) ( ) ( ) ( )βαβαβα ,,ˆ,,ˆˆˆ
0

2
2
1 rr VHVhhH targetparticle +=+++∇−=  

with an obvious definition of the zeroth order Hamiltonian and the 
perturbation.  Now, we assume we can obtain all the eigenstates of 

0Ĥ : 

µνµµνµµµ δφφ EHEH =�=0
ˆ  

where, in general, the index µ will be discrete in one portion of the 
spectrum of 0Ĥ  (corresponding to bound states) and another 
segment that is continuous (corresponding to unbound states).  
However, in practice, any calculation is done in a large but finite 
basis, in which case the spectrum is necessarily discrete.  It is then a 
trivial matter to build the Green’s operator for 0Ĥ : 

( ) � ±−
=

±−
≡±

µ µ

µµ

ε
φφ

ε iEEiHE
EG

0

0 ˆ
1ˆ . 

In matrix notation, this is simply 

( )( )
ε

δ

µ

µν
µν iEE

EG
±−

=±0 . 

The important point is that the Green’s operator can be obtained  if 
we can solve the Schrodinger equation.  On a computer, the limit 

0→ε  can only be taken approximately; too small a value of ε  will 
result give elements of ( )EG ±0  that are bigger than the computer can 
handle.  Hence, in practice one chooses this value small enough that 
the results do not significantly depend on ε  and then ignored. 
 



How do we obtain the Green’s operator for Ĥ  from the Green’s 
operator for 0Ĥ ?  Well, 
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This last term, however, is just ( )EG±
ˆ !  This result is no nifty that we 

will put it in a box: 
( ) ( ) ( ) ( )EGVEGEGEG ±±±± += ˆˆˆˆˆ

00  
This is called the Lippman-Schwinger (LS) equation.  It may look new 
to you, but let’s remember what we found for the real space 
scattering wavefunction: 

( ) ( ) ( ) rdVEGei 3
0 ),,( r'r'r'rr rk i φφ �+= ⋅  

if we recall that the Green’s function projects out all components of a 
wavefunction except those with energy E , it becomes clear that this 
equation is just the LS result applied to an arbitrary wavefunction: 

( ) ( ) ( ) ( )ψψψ EGVEGEGEG ±±±± += ˆˆˆˆˆ
00 rrr  
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So, the LS equation tells us how to build a perturbative expansion for 
the full Green’s function given an arbitrary zeroth order GF.  As we 

Eigenstate of H Eigenstate of H0 Eigenstate of H 



discussed before, it must be solved iteratively.  This result is often 
restated in terms of the transfer matrix, T̂ , 

( ) ( ) ( ) ( ) ( ) ( ) 1
0000

ˆˆˆˆˆˆˆˆˆ −
±±±±±± ≡+= EGEGVTEGTEGEGEG  

It is certainly no easier or harder to use this expression than the 
original, but the T̂  matrix has the nice physical role that it generates  
the scattering. Hence, iTf ˆ  gives the amplitude for scattering from 
a given initial state, i , to a given final state, f .  Furthermore, the 
scattering cross section is simply 

( )
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ˆ
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1
, iTf

π
φθσ = . 

This should be compared with our result in real space: 
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A few simple manipulations show that the results are equivalent. 
 

d. An Example  
 
To understand all the details of the formalism of scattering, it is good 
to work out an example of inelastic scattering.  We will consider 
scattering of an electron off of a dipolar diatomic molecule.  To 
complicate matters, the molecule has an important internal degree of 
freedom: it can vibrate.  We will model this vibration with a harmonic 
oscillator, since that makes the algebra simpler: 

( )2
1ˆˆ += nh target ω  

The electron is a free particle, except that it can interact with the 
dipole moment of the molecule through the standard charge-dipole 
interaction: 

( )
3

ˆˆ
,

r
V

µµ ⋅= r
r  

Where µ̂  is the dipole moment operator for the molecule and we 
have used atomic units ( 1=== eme� ).  We will expand the dipole in a 
power series about its equilibrium value: 
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where R̂  is the bond length of our diatomic and in the second line we 
have just used our expressions for writing R̂  in terms of the raising 
and lowering operators of the Hamiltonian ( M  is the reduced mass of 
the diatomic).  We will truncate this expansion at first order, so that 
our interaction potential looks like 
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Hence, our full Hamiltonian is: 
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We also note that our zeroth order Hamiltonian is 

( )2
12

0 ˆ
2

1ˆ ++∇− nH ω . 

Now, the full LS equation for this problem is very difficult to solve. 
However, one can extract qualitative results from it much more 
readily, and this is what we proceed to do. 
 
In order to define our initial state, we need to specify both  the state of 
the electron and the state of the molecule.  Before the interaction, the 
oscillator will clearly be in an eigenstate, which can be specified by its 
value of n .  In accordance with the previous results, we will also 
assume the electron is initially a plane wave with momentum ik .  

Hence, we our initial state is n;
ikψ .  Similarly, we will be interested 

in scattering into final states ';n
fkψ .  This is because once the 

electron is “far away” from the molecule, the only states we can 
observe in an experiment will be eigenstates of the molecular 
Hamiltonian, and the only electronic states we will observe will be 
eigenstates of the free particle Ĥ .   
 
We can immediately write down the equation for the scattering 
wavefunction: 

( ) ( )EVGnE φψφ ˆˆ; 0+=
ik  



Where 0Ĝ  is understood to be the outgoing Green’s function for 0Ĥ : 
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We can compute the matrix elements of 0Ĝ  : 
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where the second line makes use of the fact that the vibrational 
states are eigenstates of n̂ , and so 0Ĝ  cannot mix n .  This is the first 
of many selection rules we will find here. 
 
We notice that the operator on the second line only depends on 
electron variables and, if we define the effective electron energy as 
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1~ +−= nEE ω , we see that 
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which is just the free particle Green’s function for an electron with 
energy E

~ .  Hence, if we take ψ  and 'ψ to be position eigenfunctions, 
we can use our above result for the free particle GF to obtain : 

',

'
~

0 '4
1

;ˆ';' nn

rrki

rr

e
nGn δ

π −
−=

−

rr  

where Ek
~

2
~ ≡ .  What about the matrix elements for V̂ ?  Well, 
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The first term depends only on electronic operators, so we can write 
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On the right hand side, we have an integral that, in general, is very 
difficult to evaluate.  In a finite basis, we would simply define the 
matrix: 
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However, we can still say something about when this matrix is non-
zero.  First, we recognize that the operator sandwiched between iψ  
and jψ  is a spherical tensor of rank 1.  This means it has 2k+1=3 



elements that can be assigned to the indices q=1,0,-1.  To be 
concrete, these elements look like x+iy, z and x-iy, respectively. 
Now, if mli ,,αψ =  and ',',' mlj αψ =  are eigenfunctions of angular 

momentum, then we can apply the Wigner-Eckart theorem: 
lTlklmlqkmlmlTml k

q
k ,',',;',',;,,,',',' αααα =  

Where we are thinking of the specific cases k=1,  q=1,0,-1.  This 
gives us the selection rules 

'1'0,1 llllmm +≤≤−±=−′ and  
which is the same as  

0,110,1 ±=∆±=∆ andm  
with the particular case 01=∆=∆m  excluded. So, ( )ijV0  obeys these 

selection rules if we use angular momentum eigenfunctions as a 
basis. 
 
What about the selection rules for the other half of  V ? Well, the left-
over bit ( 1V≡ )is: 
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This operator always changes the state of the oscillator; it either 
raises or lowers the vibrational energy by 1 quantum.  The selection 
rules for the electronic matrix elements of 1V  are the same as for 0V , 
because we can pull out the constant terms to get 
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Thus, the electronic part not only has the same selection rules, the 
underlying integrals are the same.  Note that these integrals are 
multiplied by different constants and so the relevant magnitude of 
these two terms will not generally be comparable.  However, because 
the two portions of the potential (the elastic term 0V and the inelastic 
part) are generated by the same operator for the electron, the angular 
distribution will be exactly  the same  for both contributions to the 
scattering.  As a result, just examining the angular distribution for a 
fixed energy tells us nothing about the inelastic scattering – we can’t 
tell the difference, because the angular distributions are the same. 
 



 Let’s go order-by-order and see what terms are generated by the 
scattering potential.  To do this, we note that 0Ĝ  is a scalar, and so it 
is diagonal in the angular momentum basis (to convince yourself of 
this, notice that the position representation of 0Ĝ  depends only on r  
and not φθ , ).  This means that we only need to worry about V .  So, 
writing the LS equation as a power series, 
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These selection rules would be different for, say a charge-charge 
interaction (as opposed to the dipole-dipole interactionwe have at the 
moment) and we would be able to clearly distinguish the two by 
looking at the angular dependence of ( )φθσ , .  Hence the angular 
distribution provides detailed information about the form of the 
interaction between the particle and the target but no information 
about energy transfer between the two. 
 
One more point should be made about the angular distribution before 
we find measures of the inelastic scattering.  Our Hamiltonian 
depends on the direction of the dipole moment operator µ̂ .  Of 
course, in an experiment, the molecule will be tumbling in space and 
it becomes necessary to average over the possible orientations of µ̂  
in order to get something that corresponds to an experimental cross 
section.  But at what stage?  That is, do we average the 
wavefunctions (which are complex) or the cross sections (which are 
real)?  This depends on whether the scattering is faster or slower 
than the re-orientation of the dipole; if it is much faster, then an 
experiment just corresponds to many independent experiments that 
scatter off of different potentials.  Naively, one might expect to have 
to integrate over the angles defining the orientation of the dipole.  
However, there is a nice rule of thumb that this is equivalent to the 
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average of the cross sections for scattering off a dipole oriented along 
each of the three axes: 
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If the scattering is slower than the re-orientation of the dipole, 
however, one would average the wavefunctions.  This may seem like 
a small change, but notice that you can get destructive interference  
in this case.  In fact, if you assume that the dipole is completely free 
to reorient, the scattering amplitude disappears because you have 
equal probability of scattering off a +z dipole as a –z dipole and the 
two wavefunctions have opposite signs.  The limit of slow scattering 
and fast reorientation is only rarely encountered. 
 

e. Resonances  
 
How do we recognize inelastic scattering, if not from the angular 
distribution? Well, it is clear that once the electron is very far from the 
target, the interaction between the electron and the molecule goes to 
zero and 
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Thus, for large separations, the eigenvalue equation becomes 
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We can immediately identify the eigenfunctions on the right side; they 
are just plane waves for the electron and vibrational eigenstates for 
the nuclei, in which case 
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In order for the energy, E , to be the same for both the incoming and 
outgoing states, any energy gained (lost) by the nuclear vibrations 
must be compensated by energy lost (gained) by the electron.  Hence 
if we can measure either the energy of the electron at the detector or 
the state of the molecule after the collision, we can separate the 
scattering into elastic and inelastic parts. 



 
Unfortunately, in many experiments, one cannot do this. Fortunately, 
there are still ways to extract qualitative information about the 
inelastic scattering (which tells us about the internal structure of the 
target) by examining at the qualitative energy dependence of the 
total scattering cross section ( )Eσ . 
 
First of all, ( )Eelasticσ  should generally be a decreasing  function of 
energy, at least once the energy is above any barriers presented by 
the interaction with the target ( intEE > ).  This simply results from the 
fact that as the velocity of our particle increases, it spends less time 
in the vicinity of the target and is therefore less likely to scatter. 
Hence, we expect the elastic part to look something like the picture 
below. 
 

 
On the other hand, the 
inelastic part is zero  unless 
the incoming particle has 
enough energy to excite the 
target. In our case, the 
kinetic energy needs to be 
at least ω .  ( )Einelasticσ  will 
generally rise rapidly for 
energies just above this and 
then tend to zero for higher 
energies in a similar manner 
to the elastic part, as shown in the picture above. Just looking 
qualitatively at the total cross section, then, one expects to see a 
peak in ( )Etotσ  around the energy where inelastic scattering becomes 
possible. We will be able to separate out the different contributions if 
the different inelastic and elastic processes have different energy 
scales (i.e. assuming intE  is not too close to ω ).  
 
 A peak in the total cross section such as the one above is said to be 
due to a resonance , which can be thought of as a state that is almost 
an eigenstate of Ĥ , but not quite.  The location of the peak gives the 
energy of the resonance in a straightforward manner.  However, one 
is also typically interested in accounting for the width of the peak in 
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terms of some microscopic property of the system.  We can do this in 
two different ways: 
 

1) Quantitative Result 
 
In our case, the resonance is the first excited state of the oscillator; in 
the absence of the interaction with the electrons, this is an eigenstate 
of the Hamiltonian, but the interaction mixes this state with other 
states where, for example, the oscillator is in the ground state and the 
electron kinetic energy is increased by ω .  Hence, it is “almost” an 
eigenstate.  To see how this gives rise to a width in the resonance, 
we should compute the uncertainty in energy for the n=1 state: 
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However, recalling that 
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we find 
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which means that the only terms that contribute to the width are the 
terms from the interaction 

22 ˆ1;ˆˆ1; VnVVnE −===∆ kk . 

If we expand the right hand side in terms of 1̂V  and 0̂V  and remember 
that our selection rules were 1±=∆n  for the former and 0=∆n  for the 
latter, we get: 
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Thus the uncertainty arises from two different sources; an inelastic 
part (the first term) and an elastic part (the second term).  The second 
term clearly corresponds to the contribution from ( )Eelasticσ , and so we 
can neglect it when discussing the width of the inelastic part of the 



resonance. The second term would be zero if there was no n=0 state.  
Thus, it accounts for some additional “smearing out” of the energy 
due to the possibility of inelastic scattering involving n=0. 
 

2) Qualitative Picture 
 
What is going on physically?  
Consider scattering off a 
molecule in the n=1 state.  The 
n=1 state can decay  back to the 
n=0 state by transferring the 
excitation energy to the electron, 
as shown in the picture at right.  
This describes a loss of 
probability for being found in the 
n=1 state. The uncertainty in 
energy arises from the fact that, 
after the decay, the molecule can 
still be re-excited back to the n=1 
state by interacting with the electron a second time. This second 
order term will look like 11

ˆˆVV , analogous to the inelastic contribution to 
the uncertainty in energy.  Hence, the width of the resonance must be 
attributable to these very rapid excitation-decay processes. 
 
In order to model this decay, one might postulate that the time 
dependence of the n=1 state looks something like: 

0;1;;1; 2/ ==== Γ−− tnketnk tiEt
 

where the first term in the exponential is the approximate energy of 
the state (given, perhaps, by the center of the resonance) and Γ is 
some constant that represents the decay rate of the state.  At the 
very least, this prescription gives a straightforward representation of a 
state that is clearly decaying, since 

tetnktnk Γ−=== ;1;;1;  
which indicates that the probability of finding the system in this state 
is a monotonically decreasing function of time. 
 
We notice, however, that the same form could be obtained if we 
assume that 2/ˆˆ

0 Γ−= iHH , for then 
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In this case, the energy becomes associated with the edge of the 
resonance, but this is a small difference if the resonance is narrow. 
 
Given this form for Ĥ , we can easily compute the scattering cross 
section for scattering in the n=1 state: 
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This form for the shape of the resonance (or linewidth) is usually 
called the Breit-Wigner form. It shows that the scattering off a 
resonance with lifetime Γ/1  is described by a Lorentzian of width 

2/Γ .  Thus, we see a complete story of the physical origin of the 
width of the resonance; it arises from the fact that the n=1 state is not 
an eigenstate of Ĥ , and therefore there is some “smearing out” of the 
intensity around the approximate energy of the n=1 state.  Further, 
this smearing out can be qualitatively associated with the lifetime of 
the metastable n=1 state.  Because of the simple association of 
lifetimes with Lorentzian lineshapes, one often sees experimental 
data fit to this functional form in an effort to extract the lifetime. 


