V. Scattering

a. Design of a scattering experiment

Up to now, we have dealt primarily with systems where the goal was
essentially to find the eigenvalues and eigenstates of some
Hamiltonian. This approach covers a vast amount of chemistry, but is
not all-inclusive. In practice, one often probes the character of a
molecular system by performing a scattering experiment as depicted
in generic fashion below:

Detector at

angle,p
Incident Beam R Momentum K;
]
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Target at
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Here, there is a beam of particles incident on the “target” we are
interested in and we have a detector that is able to sense the arrival
of these patrticles once they have been deflected off the target. Itis
assumed that the interaction between the particles and the target
decays as a function of the distance between them (thus, harmonic
interactions are out) and that the detector is far enough away that the
interaction can be neglected by this point. Our goal, of course, is to
obtain information about the target from the angular distribution of
scattered particles. The paradigm is the search for steady states
instead of the search for stationary states. Also, note that the
scattering off multiple targets (as might happen in a crystal) can be
treated by repeated applications of the formalism we will develop.



b. Elastic Scattering

At this point, most introductory texts neglect any internal structure of
the incident particles (e.g. vibrational state, rotational state, spin,
etc.). The scattering is therefore elastic (i.e. no energy is absorbed
by the incident particles). In general, this approximation is not at all
relevant to chemistry! Typically, the incident beam consists of some
molecules and the scattered beam consists of different molecules
(reactive scattering) and/or the same molecules in different quantum
states (inelastic scattering).

Hence, we will be most interested in a formalism that goes beyond
the standard treatment. However, there are several aspects of the
theory of elastic scattering that carry over to the more general case,
and we touch on those now. We will also assume that the particles
interact with the target through a potential V (r) to give the equations

a concrete form.

1. The Scattering Cross Section

In general the thing we will be most interested in is the number of
scattered particles, dn, per unit of incident particle flux, F.. Thatis,

we are interested in the ratio dn/F, for a particular detector position.
This is the analog of the “reaction probability”. Typically, we envision
the detector as occupying an infinitesimal span of angles d@ and d¢.

Clearly, the number of particles sensed by the detector will be
proportional to this angular area — bigger detectors will detect more
particles. Hence, we can write

dn/F. =0(6,¢) sinddddg

where the constant of proportionality, 0(5,¢), is called the differential
cross section , and we have noted explicitly that it depends on € and
¢. We can also define the total cross section by

o=[dn/F = [o(6,¢)sing d8 dp

The name “cross section” arises from the fact thato has the
dimensions of area and therefore represents the effective size of the
target from the point of view of the incident particles — smaller cross



sections mean less scattering which means an effectively smaller
target.

2. The Integral Equation

In order to solve the scattering problem what we would really like is a
way to transform the incoming wave into the scattered wave. It turns
out that the Green’s function provides just such a transformation
and hence we proceed to discuss it.

It is useful to first define the Green’s operator for a given H .
Essentially, we want something that takes any initial state and gives
us back an eigenstate of energy E. Formally, one might write
something like this:
A 1
G(E) -
This operator gives infinite weight to any state with eigenvalue E and
finite weight to all other states. Itis thus a “filter” that selects states
that have the energy we are interested in. However, the fact that this
operator has some infinite eigenvalues poses some technical
mathematical difficulties. It turns out that this can be formally fixed by
adding or subtracting a small imaginary part from the denominator
G.(E)=——r—
E-H=zi¢
These two operators are the Green’s operators for H . The small
imaginary parts ensure that the Greens operator is never quite
singular. At the end of the calculation, one always takes the limit
& - 0 and so this small imaginary part never appears explicitly in any
final result.

The Green’s function is just the position representation of Green’s

operator
).
It satisfies the differential equation:
(E— I—A|)Gi(r,r',E)= o(r-r)

where one implicitly takes the limit £ — 0 after applying H. These
two operations do not commute, and so it is important to do them in

, 1
Gi(r,r ,E)=<r‘m



the proper order. This equation is just the way of saying, in position
space, that G, (r,r' ,E) is the inverse of (E -H ); if we multiply them
together, we get the identity (8(r —r")).

There are only a few Green’s functions that can be calculated exactly.
The most useful Green’s function (GF) for scattering is the free

particle GF. If we define I:|0 =-10%and E =k? then the appropriate
GF, G,,(r,r' ,E), is given by

1 eiik\r—r‘\

G r.r',E)=—-———.
o ) 4 |r =]

We will not derive this result, but it is easy enough to show that (cf.

CTDL 916)
(E-H,)6..(r,r E)=0(r ).

This result immediately points out to us the significance of the sign of
the small imaginary component; the positive and negative solutions
correspond to waves propagating outward and inward, respectively.
Only the outward propagating waves are appropriate for our
scattering considerations, and so we choose the “+” Green’s function
and denote it G,(r,r' ,E) from this point on.

We can use the free particle Green'’s function to transform the
incoming wave into the scattered wave. Specifically, we presume the

incoming wave is an eigenstate of I—AI0 (i.e. a plane wave traveling in
the direction k,). Then the scattered wavefunction is given by

Ar)=e“"+[Gy(r.r' ,E) V(" )olr' )d°r .
This is very easy to prove. We want to verify that the above
wavefunction is an eigenstate of I—Al0 +V(r). To show this, we operate

on the left with E-H,:
(E—I:IO) r)=(%‘m+(E—I—AIO)IGO(r,r' JE)V(r )edr )d

= +I(E—I:|O)Go(r,r',E)V(r')qa(r')dsr
= +Id(r—r')V(r')(p(r')d3r=—V(r)¢(r)



Which shows that the outgoing wavefunction is an eigenstate of
I—AI0 +V(r) with eigenvalue E. This equation is more useful than the

Schrodinger equation (which can also give an eigenstate of
eigenvalue E) because it naturally incorporates the correct boundary
conditions (namely that the scattered state comes from a particular
incident beam of particles).

We now want to derive an expression for the cross section based on
this form for the scattered wavefunction. This involves some rather
tedious algebra but there are two key steps

1) One shows that in far away from the target, the scattered
wavefunction looks like:

dAr)= e = L & ferny () )l

an r

this is clearly the sum of a plane wave and a function
jkr

proportional to

(called a free spherical wave). The

latter results only from particles scattering off the target.
2)The cross section can be shown to be just the square
modulus of the amplitude of the scattered wave:

o(6.0)= IekW/)deWZ

This is shown by computlng the probability flux (or current )
in the @, ¢ direction:

3=-i(g (1)0glr )+ olr )0 (1))
Note that this is zero if the wavefunctions are real. Also,
although the letter J is used for current and angular
momentum, the two are unrelated.

3. The Born Approximation

We return to the integral equation for the scattered wavefunction:

dr)=e“" +[Gy(r,r ,E) V(' )edr )d°r.



We have seen how one can obtain the cross section once ¢(r )has
been determined, but ¢ appears on both sides of this equation! This
complicates the solution of this integral equation significantly.

In practice, one follows an iterative route. First, one assumes

¢(r)=0. Plugging this in on the right side of the equation gives
¢(r): kil

then, one takes this apprimation to ¢(r), and plugs it in on the right

hand side again,

Ar)=éek® +IGO(r,r' JE) V(r)e i ™dr

This gives us a slightly better approximation to ¢(r), which we can
immediately plug back in to the right hand side of the integral
eqguation to obtain an even better approximation.... Of course, this is
something that you never want to do yourself; you want to make a
computer do it for you. But it is a direct route to the exact solution of
the problem. Note that each successive iteration will involve one
higher power of V(r). Hence, this can be thought of as a perturbative
expansion of the wavefunction in powers of the interaction V(r).

Note that it is different than the perturbative expansions we have
seen previously. In practice, if one is forced to do such a calculation
by hand, one stops at first order, which results in a scattering cross
section

2

2
6.0~ 1 e vl e <[ L ferv(e)r

where, on the right hand side, we have defined the scattering
wavevector K =k, —k,. This approximation is called the Born

approximation; it is rather simple to apply because all one needs to
know is the Fourier transform of the potential. It is not, however,
particularly accurate.

c. Inelastic Scattering

For inelastic scattering, we need to consider Hamiltonians of the
form:

~

l:l :_%DZ+hparticle(a)+Htafgd(ﬁ)-'-v(r’a’ﬁ)



where a and 3 denote all the relevant internal degrees of freedom of
the incident particle and the target, respectively. These might include
tangible variables like the orientation of a molecular dipole moment,
but more often we will be interested abstract degrees of freedom like
the spin or the vibrational quantum number. Because it is difficult to
describe an abstract degree of freedom (like spin) in real space, it is
best to work in state space (i.e. the matrix representation) to treat
inelastic scattering.

We want to build the Green’s function for this Hamiltonian. As was

the case for elastic scattering, we do this by identifying the part of H
that we can solve and then doing a perturbative expansion in the rest.
So we define

l:l = _%DZ + hparticle(a)+ htarget(ﬁ)_'-v(r’a’ﬁ) = HAO +V(r,a',,8)
with an obvious definition of the zeroth order Hamiltonian and the
perturbation. Now, we assume we can obtain all the eigenstates of
Ay

A~

Hol@,)=E,|l¢.)=H, =E,J,
where, in general, the index p will be discrete in one portion of the
spectrum of I—AI0 (corresponding to bound states) and another

segment that is continuous (corresponding to unbound states).
However, in practice, any calculation is done in a large but finite
basis, in which case the spectrum is necessarily discrete. Itis then a

trivial matter to build the Green’s operator for H,:

CEor(E)E E-A tie I:ll Iy :Z—‘iaﬂx%‘ .
otle TE-E, ti€
In matrix notation, this is simply
o)

G.\E)), =—L—.
Cu® =g iz
The important point is that the Green’s operator can be obtained if
we can solve the Schrodinger equation. On a computer, the limit
& - 0 can only be taken approximately; too small a value of £ will

result give elements ofGOi(E) that are bigger than the computer can

handle. Hence, in practice one chooses this value small enough that
the results do not significantly depend on &£ and then ignored.



How do we obtain the Green’s operator for H from the Green’s
operator for H,? Well,

G, (E)* -V
This last term, however, is just G, (E)! This result is no nifty that we
will put it in a box:

G, (E) =Gy, (E)+ Gy (ENG, (E)
This is called the Lippman-Schwinger (LS) equation. It may look new

to you, but let's remember what we found for the real space
scattering wavefunction:

Ar)=ek" +IGO(r,r' E) V(' )edr )d®r

if we recall that the Green’s function projects out all components of a
wavefunction except those with energy E, it becomes clear that this
equation is just the LS result applied to an arbitrary wavefunction:

(r éil(E)\w ={r |Ge. (lE)W +(r[Ge. (ENG, (f)\w>

Eigenstate of H  Eigenstate of bl Eigenstate of H
=(r|g)=(r|@)+(rG..(EN|9)
=(r|g)+ [ {r Go. (E)r){r V| @d’r

So, the LS equation tells us how to build a perturbative expansion for
the full Green’s function given an arbitrary zeroth order GF. As we



discussed before, it must be solved iteratively. This result is often
restated in terms of the transfer matrix, T,

G, (E) =G, (E)+ G, (E)TG. (E) T =VG, (E)G.. (E)”
It is certainly no easier or harder to use this expression than the
original, but the T matrix has the nice physical role that it generates
the scattering. Hence, ( f [T|i) gives the amplitude for scattering from
a given initial state,i, to a given final state, f . Furthermore, the
scattering cross section is simply

{1 )

o(6,9) = o

This should be compared with our result in real space:
2

J(e,qo):‘%? [ v ()l )aor

A few simple manipulations show that the results are equivalent.

2

d. An Example

To understand all the details of the formalism of scattering, it is good
to work out an example of inelastic scattering. We will consider
scattering of an electron off of a dipolar diatomic molecule. To
complicate matters, the molecule has an important internal degree of
freedom: it can vibrate. We will model this vibration with a harmonic
oscillator, since that makes the algebra simpler:

Nage = (A + 3)
The electron is a free particle, except that it can interact with the

dipole moment of the molecule through the standard charge-dipole
interaction:
r A
V(rp)= rf
Where /i is the dipole moment operator for the molecule and we
have used atomic units (7 =m, =e=1). We will expand the dipole in a

power series about its equilibrium value:




i= [ +ﬂ1ﬁ+%ﬂ2ﬁ2 to
_IZ'I +/7 (é'T+é') +IZ'I (é'T+é')2
T 2IMw TP 242/ Mw
where R is the bond length of our diatomic and in the second line we
have just used our expressions for writing R in terms of the raising
and lowering operators of the Hamiltonian (M is the reduced mass of
the diatomic). We will truncate this expansion at first order, so that
our interaction potential looks like
A~ ~ AT A~
V(I‘,,U)Z r ngo +I’ Djl(a +?)
r N2 Max
Hence, our full Hamiltonian is:
N B 1 LT, PO(at +a)
H=-=0%+ +V(ru)=-=0*+aA+1)+—22+—11 :
2 htarget ( /'1) 2 a( 2) r3 \/2/MC€I3
We also note that our zeroth order Hamiltonian is
H, —%Dz +afAi+1).
Now, the full LS equation for this problem is very difficult to solve.

However, one can extract qualitative results from it much more
readily, and this is what we proceed to do.

+...

In order to define our initial state, we need to specify both the state of
the electron and the state of the molecule. Before the interaction, the
oscillator will clearly be in an eigenstate, which can be specified by its
value of n. In accordance with the previous results, we will also
assume the electron is initially a plane wave with momentum k; .

Hence, we our initial state is ‘(,l/ki ;n>. Similarly, we will be interested

in scattering into final states‘wkf ;n'>. This is because once the

electron is “far away” from the molecule, the only states we can
observe in an experiment will be eigenstates of the molecular
Hamiltonian, and the only electronic states we will observe will be

eigenstates of the free particle H .

We can immediately write down the equation for the scattering

wavefunction: o
‘AE» = ‘wki ;n> + GOV‘dE»



Where G, is understood to be the outgoing Green’s function for H:
G, =(E+10%-cf+1)+ig)"

We can compute the matrix elements of G, :

(W |Golgin) = (s n'\(E +102 - +1)+ ig)_l\z//; n)
=(;n|(E-aln+2)+30% +ig) |win)a,

where the second line makes use of the fact that the vibrational
states are eigenstates of n, and so G, cannot mix n. This is the first
of many selection rules we will find here.

We notice that the operator on the second line only depends on
electron variables and, if we define the effective electron energy as

E=E-a(n+1), we see that
(W' |Gy|gin) = <¢';n\(l§ +1002 + ig)_l\t//; n)o, ,

which is just the free particle Green’s function for an electron with
energy E. Hence, if we take ¢ and ¢'to be position eigenfunctions,
we can use our above result for the free particle GF to obtain :

R 1 eil?\r—r'\
1. IG . -
<r’n| 0|r’n> 47T|I’—r'| n,n

where k = \/ZE . What about the matrix elements for V ? Well,

.| r Djo - 1! fljjl é’T + é' .
(i, plsn) = (@i |—52 tw.,n>+<wj,n\ﬁtw“n>
The first term depends only on eIectronic operators SO we can write
winl =2 = (win R ina,, =, fu () e 0

On the right hand side, we have an integral that, in general, is very
difficult to evaluate. In a finite basis, we would simply define the
matrix:

(Vo) = 2o Djl// 4 (r)d°r

However, we can still say somethlng about when this matrix is non-
zero. First, we recognize that the operator sandwiched between ¢,

and ¢, is a spherical tensor of rank 1. This means it has 2k+1=3



elements that can be assigned to the indices q=1,0,-1. To be
concrete, these elements look like x+iy, z and x-iy, respectively.
Now, if ;) =|a,I,m) and ¢, =|a",I',m’) are eigenfunctions of angular
momentum, then we can apply the Wigner-Eckart theorem:

(a'1',m [T a.l,m)=(,mk,q|l',m;l,k)a" I'[T,|a.])
Where we are thinking of the specific cases k=1, g=1,0,-1. This
gives us the selection rules

m-m=+10 and |I-I|sl<l+I’
which is the same as
Am=+10 and Al=%10

with the particular case Am=A1=0 excluded. So, (v,), obeys these
selection rules if we use angular momentum eigenfunctions as a
basis.

What about the selection rules for the other half of V ? Well, the left-
over bit (£V,)is:
> (4T 4 4 o e
<(//j ; nl‘%aa}ﬁa)“yi , n> =+Nn +l(5n',n+l + 5n'+1,n)__[owj (r) %(A (r )d 3r )
This operator always changes the state of the oscillator; it either
raises or lowers the vibrational energy by 1 quantum. The selection
rules for the electronic matrix elements of V, are the same as for V,,

because we can pull out the constant terms to get

> (47 4 3 o P
<lﬂj ; n"lﬂ]— /%axga)h//. , n> = \/n—"'l(én"nﬁl_ + Jnlﬂ'n)—/Zil\-/l—a) H D__[O‘//J (I‘) %‘/ju (I‘ )d r
Thus, the electronic part not only has the same selection rules, the
underlying integrals are the same. Note that these integrals are
multiplied by different constants and so the relevant magnitude of
these two terms will not generally be comparable. However, because
the two portions of the potential (the elastic term V,and the inelastic

part) are generated by the same operator for the electron, the angular
distribution will be exactly the same for both contributions to the
scattering. As a result, just examining the angular distribution for a
fixed energy tells us nothing about the inelastic scattering — we can’t
tell the difference, because the angular distributions are the same.



Let’s go order-by-order and see what terms are generated by the
scattering potential. To do this, we note that éo is a scalar, and so it
Is diagonal in the angular momentum basis (to convince yourself of
this, notice that the position representation of éo depends only on r
and not ,¢). This means that we only need to worry about V. So,

writing the LS equation as a power series,
G(E)=G,(E) — > An=Al=Am=0,

\//0v An=0 Al=£1,0 Am=%1,0
+G,(ENG,(E) " An=tl A=£10 Am=+1,0

W An=0 Al=£2,+1,0 Am=+2,+1,0

+Gy(ENG,(ENG, (E) Ty An=tl Al=:2.£10 Am=2:£1,0
1Vo
W AN=2,0 Al=#2+1,0 Am=#2,+1,0
+...

These selection rules would be different for, say a charge-charge
interaction (as opposed to the dipole-dipole interactionwe have at the
moment) and we would be able to clearly distinguish the two by
looking at the angular dependence of o(6,¢). Hence the angular
distribution provides detailed information about the form of the
interaction between the particle and the target but no information
about energy transfer between the two.

One more point should be made about the angular distribution before
we find measures of the inelastic scattering. Our Hamiltonian
depends on the direction of the dipole moment operator i. Of
course, in an experiment, the molecule will be tumbling in space and
it becomes necessary to average over the possible orientations of

in order to get something that corresponds to an experimental cross
section. But at what stage? That is, do we average the
wavefunctions (which are complex) or the cross sections (which are
real)? This depends on whether the scattering is faster or slower
than the re-orientation of the dipole; if it is much faster, then an
experiment just corresponds to many independent experiments that
scatter off of different potentials. Naively, one might expect to have
to integrate over the angles defining the orientation of the dipole.
However, there is a nice rule of thumb that this is equivalent to the



average of the cross sections for scattering off a dipole oriented along
each of the three axes:

o (@)= 0 E) o, (E)+o.(E)

3

If the scattering is slower than the re-orientation of the dipole,
however, one would average the wavefunctions. This may seem like
a small change, but notice that you can get destructive interference
in this case. In fact, if you assume that the dipole is completely free
to reorient, the scattering amplitude disappears because you have
equal probability of scattering off a +z dipole as a —z dipole and the
two wavefunctions have opposite signs. The limit of slow scattering
and fast reorientation is only rarely encountered.

e. Resonances

How do we recognize inelastic scattering, if not from the angular
distribution? Well, it is clear that once the electron is very far from the
target, the interaction between the electron and the molecule goes to
zero and
HOM, - Ho=-102 +afn+3)

Thus, for large separations, the eigenvalue equation becomes

H|o(E)) = El@(E)) D [, - -10% + (i + 1) o(E)) = E|¢(E))
We can immediately identify the eigenfunctions on the right side; they

are just plane waves for the electron and vibrational eigenstates for
the nuclei, in which case

i) =10 v oe)= (5 vl ) o)
= E= (k—22+w(n+%)j

In order for the energy, E, to be the same for both the incoming and
outgoing states, any energy gained (lost) by the nuclear vibrations
must be compensated by energy lost (gained) by the electron. Hence
if we can measure either the energy of the electron at the detector or
the state of the molecule after the collision, we can separate the
scattering into elastic and inelastic parts.



Unfortunately, in many experiments, one cannot do this. Fortunately,
there are still ways to extract qualitative information about the
inelastic scattering (which tells us about the internal structure of the
target) by examining at the qualitative energy dependence of the
total scattering cross section o(E).

First of all, o,..(E) should generally be a decreasing function of

energy, at least once the energy is above any barriers presented by
the interaction with the target (E > E, ). This simply results from the

fact that as the velocity of our particle increases, it spends less time
in the vicinity of the target and is therefore less likely to scatter.
Hence, we expect the elastic part to look something like the picture
below.

On the other hand, the
inelastic part is zero unless
the incoming particle has
enough energy to excite the
target. In our case, the
kinetic energy needs to be
atleast «. 0, ... (E) wil

generally rise rapidly for

energies just above this and I
then tend to zero for higher Ein
energies in a similar manner

to the elastic part, as shown in the picture above. Just looking
qualitatively at the total cross section, then, one expects to see a
peak in g, (E) around the energy where inelastic scattering becomes
possible. We will be able to separate out the different contributions if

the different inelastic and elastic processes have different energy
scales (i.e. assuming E,  is not too close to ).

Oelastic

int

A peak in the total cross section such as the one above is said to be
due to a resonance , which can be thought of as a state that is almost

an eigenstate of H, but not quite. The location of the peak gives the
energy of the resonance in a straightforward manner. However, one
Is also typically interested in accounting for the width of the peak in



terms of some microscopic property of the system. We can do this in
two different ways:

1) Quantitative Result

In our case, the resonance is the first excited state of the oscillator; in
the absence of the interaction with the electrons, this is an eigenstate
of the Hamiltonian, but the interaction mixes this state with other
states where, for example, the oscillator is in the ground state and the
electron kinetic energy is increased by «. Hence, it is “almost” an
eigenstate. To see how this gives rise to a width in the resonance,
we should compute the uncertainty in energy for the n=1 state:

=(k;n =1\(ﬁ0 +\7)2\k; n=1-(k;n =1\(I—AI0 +\7]k;n =1>2

= <k;n :1‘I—A|02 + I:|o\7 +\7|:|o +\7\7‘k;n :1>
~(Fo) =2 (V) - (V)
However, recalling that

2
Holk;n=1)= (k?+—j\kn 1) =E|k;n=1)

= (kin =17 + + 7+ +Wkin=1)- 57 - 2V ) - (V

which means that the only terms that contribute to the width are the
terms from the interaction

=(k;n =1W\k;n =1>—<\7>2.
If we expand the right hand side in terms of V, and V, and remember
that our selection rules were An=z1 for the former and An=0 for the

e A~ o =10, G 2 n=1-0, 20 -

= AE? = (V) + (V) = (V) = (VL) + AV,
Thus the uncertainty arises from two different sources; an inelastic

part (the first term) and an elastic part (the second term). The second
term clearly corresponds to the contribution from o (E), and so we

can neglect it when discussing the width of the inelastic part of the

we find



resonance. The second term would be zero if there was no n=0 state.
Thus, it accounts for some additional “smearing out” of the energy
due to the possibility of inelastic scattering involving n=0.

2) Qualitative Picture

What is going on physically?
Consider scattering off a
molecule in the n=1 state. The
n=1 state can decay back to the
n=0 state by transferring the
excitation energy to the electron,
as shown in the picture at right.
This describes a loss of
probability for being found in the
n=1 state. The uncertainty in
energy arises from the fact that,
after the decay, the molecule can
still be re-excited back to the n=1
state by interacting with the electron a second time. This second

order term will look like VV,, analogous to the inelastic contribution to

the uncertainty in energy. Hence, the width of the resonance must be
attributable to these very rapid excitation-decay processes.

n=0

In order to model this decay, one might postulate that the time
dependence of the n=1 state looks something like:

k;n=1t)=e"™""?|k;n=1t=0)
where the first term in the exponential is the approximate energy of
the state (given, perhaps, by the center of the resonance) and I is
some constant that represents the decay rate of the state. At the

very least, this prescription gives a straightforward representation of a
state that is clearly decaying, since

(kn=Lt/k;n=1Lt)=€e™"
which indicates that the probability of finding the system in this state
Is a monotonically decreasing function of time.

We notice, however, that the same form could be obtained if we
assume that H = H, —il /2, for then



[kn=1t)= e‘”ﬂk;n =1t=0)=e""?k;n=1t=0).
In this case, the energy becomes associated with the edge of the
resonance, but this is a small difference if the resonance is narrow.

Given this form for H , we can easily compute the scattering cross
section for scattering in the n=1 state:

1 2
E-H
1

(E-E,)+(r/2f
This form for the shape of the resonance (or linewidth) is usually
called the Breit-Wigner form. It shows that the scattering off a
resonance with lifetime 1/T is described by a Lorentzian of width

/2. Thus, we see a complete story of the physical origin of the
width of the resonance; it arises from the fact that the n=1 state is not

an eigenstate of H, and therefore there is some “smearing out” of the
intensity around the approximate energy of the n=1 state. Further,
this smearing out can be qualitatively associated with the lifetime of
the metastable n=1 state. Because of the simple association of
lifetimes with Lorentzian lineshapes, one often sees experimental
data fit to this functional form in an effort to extract the lifetime.

2

L kn=1)

-E,+il/2

o=|k;n=1 k;n=1)

=({k:n=1




