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Introduction

The purpose of this lab is to give you experience with second-order networks, and to illustrate that
real network elements do not always behave in an ideal manner. All exercises in this lab focus on
the behavior of the network and network elements shown in Figure 1. You should complete the
pre-lab exercises in your lab notebook before coming to lab. Then, carry out the in-lab exercises
on your assigned lab day between November 8 and November 15. After completing the in-lab
exercises, have a TA or LA check your work and sign your lab notebook. Finally, complete the
post-lab exercises in your lab notebook. You may turn in your lab notebook for grading at that
time, or keep it until the end of Lab #4.

Pre-Lab Exercises

(3-1) Assume that the network is initially at rest. At t = 0, the input voltage vIN(t) steps from
0 V to VTI. Given this input, determine the transient response of vOUT(t). Note that
vOUT(t) takes the form vOUT(t) = VTO sin(ωTt + φT)e−αTt. Hint: see Homework Problem
8.3.

(3-2) Let L = 47 mH, C = 0.0047 µF, R = 220 Ω and VTI = 10 V. Under these conditions,
graph the transient response of vOUT(t) for 0 ≤ t ≤ 0.3 ms; graphing the peaks and zero
crossings of the response and a few points in between each peak and zero crossing should
be sufficient. On separate graphs, repeat this exercise for R = 560 Ω and R = 1000 Ω. To
save time, you may wish to use MatLab on Athena as discussed below.

(3-3) For all three values of R, compute the voltage VTP at the first peak of the transient response,
the frequency ωT at which the transient response oscillates, and the rate αT at which the
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Figure 1: second-order network.



transient response decays. Note that peaks of the transient response occur at times such
that tan(ωTt+ φT) = ωT/αT; you should verify this.

(3-4) Assume that the network is in sinusoidal steady state. Determine the response of vOUT(t)
to the input vIN(t) = VSI cos(ωSt). Note that vOUT(t) will take the form vOUT(t) =
VSO(ωS) cos(ωSt+ φS(ωS)). Hint: see Homework Problem 9.1.

(3-5) Let L = 47 mH, C = 0.0047 µF and R = 220 Ω. On separate graphs, graph log |HS(ωS)|
and φS(ωS) versus log(ωS/(2π × 10 kHz)) for 2π × 1 kHz ≤ ωS ≤ 2π × 100 kHz where
HS(ωS) ≡ VSO(ωS)/VSI. Ten to fifteen points per graph should be sufficient to clearly
outline HS if you space the points more closely near the peak of HS. Again on separate
graphs, repeat this exercise for R = 560 Ω and R = 1000 Ω. You may find it easiest to
use log-log graph paper for the graph of HS and linear-log graph paper for the graph of φS.
Alternatively, to save time, you may wish to use MatLab on Athena as discussed below.

(3-6) For all three values of R compute the peak value HSP of HS, the frequency ωSP at which
the peak occurs, and Q. Note that Q is defined as Q ≡ ωSP/2αT, and that HS(ωS) will
have fallen from its peak value of HSP by a factor of

√
2 at ωS ≈ ωSP ± αT.

You are strongly encouraged, although not required, to use MatLab to plot the graphs outlined
above. To use MatLab, you must first type “add matlab” at the Athena prompt, and then invoke
MatLab by typing the command “matlab” at the Athena prompt. The MatLab commands, “step”
and “bode” can then be used to plot the desired graphs. You can learn how to use these commands
by typing “help step” and “help bode” at the MatLab prompt. The “step” command accepts
an optional time-vector argument to specify the time range over which the step response is to be
plotted. To define an appropriate time vector T, type “T = linspace(0,3e-4,100);” at the MatLab
prompt. The vector T will then contain 100 evenly spaced points between 0 ms and 0.3 ms. The
“bode” command accepts an optional frequency-vector argument to specify the frequency range
over which the frequency response is to be plotted. To define an appropriate frequency vector
W, type “W = 2*pi*logspace(3,5,100);” at the MatLab prompt. The vector W will then contain
100 logarithmically spaced points between 103 and 105 Hz. Additionally, note that the “bode”
command in MatLab uses the frequency variable s, where s = jω. Finally, figures plotted by
MatLab may be printed on an Athena printer using the MatLab “print” command. To learn more,
type “help print” at the MatLab prompt.

In-lab Exercises

The in-lab exercises involve measuring both the step response and sinusoidal response of the network
shown in Figure 1 for three values of R. You should feel free to measure these responses for only
one value of R, and then share your measurements with two other partners who have measured the
network responses for the other two values of R. However, should you take this team approach,
all team members must use the same inductor and capacitor. You should also indicate in your lab
notebook which responses you measured, and which responses you have taken from another team
member. Finally, you are advised to look at all responses on the oscilloscope before you leave the
lab so that you see for yourself how they vary as R varies.

Real network elements do not always behave the way we model them in 6.002. For example,
a real inductor might be better modeled as an ideal inductor in series with a resistor as shown in
Figure 2. The resistor is a parasitic element, meaning that it is undesired, but unavoidable. The
resistor accounts for the resistance of the wire used to wind the inductor. Yet more complex models



could account for core losses and the capacitance between winding turns. For this reason, the model
shown in Figure 2 is not the only possible model. In a similar way, a real capacitor might be better
modeled as an ideal capacitor in parallel with a parasitic conductance which models leakage through
the dielectric of the capacitor. This is also shown in Figure 2.

In the exercises which follow, the network in Figure 1 will be exposed to inputs that vary at
high enough frequencies that you can ignore the parasitic parallel conductance of the capacitor.
Therefore, we need only be concerned with the parasitic series resistance of the inductor.

(3-1) Take a 47 mH inductor, a 0.0047 µF capacitor, a 220 Ω resistor, a 560 Ω resistor and a
1000 Ω resistor from your lab kit to the instrument desk and use the GenRad impedance
meter to measure these elements and determine the parasitic resistance and conductance
of the inductor and capacitor, respectively. To measure the inductor, set the meter for
1 kHz, the series model, and the appropriate element type and value range. The meter will
directly read the inductor value. It will also read Q from which you can determine RP from
Q = ωL/RP, where ω = 2π× 1 kHz. To measure the capacitor, set the meter for 1 kHz,
the parallel model, and the appropriate element type and value range. The meter will now
directly read the capacitor value. It will also read D from which you can determine GP

from D = GP/ωC, where ω = 2π× 1 kHz.

(3-2) Construct the second-order network shown in Figure 1 using the measured inductor, capac-
itor and 220 Ω resistor.

(3-3) Set the signal generator to produce a 10 V peak-to-peak square wave at 50 Hz with a 5 V
offset so that its open-circuit output voltage steps between 0 V and 10 V. With the oscillo-
scope, measure the transient response of the resistor voltage vOUT(t) to the positive going
step, and compare the response to that plotted during the pre-lab exercises. Measuring
data at times which correspond to the points graphed during Pre-Lab Exercise 3-2 is suffi-
cient. Also measure the voltage VTP, the oscillation frequency ωT, the rate of decay αT. To
measure αT it is easiest to measure the time τT over which the transient response decays
by 1/e and then compute αT = 1/τT.

(3-4) Set the signal generator to produce an open-circuit 10 V peak-to-peak sinusoidal voltage
with zero offset; the open-circuit voltage is vIN(t). Connect the SYNC output of the gen-
erator to one oscilloscope channel, and trigger the oscilloscope off that channel. Use the
other oscilloscope channel to measure the resistor voltage vOUT(t) over the frequency range
of 1 kHz to 100 kHz. In particular, measure the peak-to-peak amplitude of vOUT, and
the difference in time between neighboring zero crossings of the SYNC output and vOUT;
note that the SYNC output has the same zero crossings as vIN. From this data you will
determine HS and φS during the post-lab exercises. Measuring data at frequencies which
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Figure 2: improved models for a real inductor and a real capacitor.



correspond to the points graphed during Pre-Lab Exercise 3-5 is sufficient. Also measure
the peak voltage ratio HSP of HS, the frequency ωSP at which the peak occurs, and Q. Q is
most easily measured by first measuring the difference between the two frequencies at which
the ratio HS falls from its peak value of HSP by a factor of

√
2; this frequency difference

should be 2αT; Q is then given by Q = ωSP/2αT.

It is important to note that φS(ωS) is the phase shift of vOUT relative to vIN. The most
convenient manner in which to measure φS is to measure the time delay from zero crossings
of vIN to zero crossings of vOUT. This time delay may then be converted to a phase shift.
Unfortunately, vIN is internal to the signal generator, and hence not measurable. However,
the SYNC output of the generator and vIN have the same zero crossings, which is why the
SYNC output is used in this exercise as a reference for measuring phase shift.

(3-5) Repeat In-Lab Exercises 3-2 through 3-4 with the measured 560 Ω resistor and the 1000 Ω
resistor.

Post-lab Exercises

Complete these exercises in your lab notebook using the responses which you calculated during the
pre-lab exercises, and the data which you measured during the in-lab exercises. The primary goal
of the post-lab exercises is to explain any discrepancies which may exist between the responses you
calculated during the pre-lab exercises and the responses you measured during the in-lab exercises.

(3-1) Plot the recorded transient response data on the corresponding graph prepared during the
pre-lab exercises. How well does the measured data match the theoretical graph? That is,
how do they differ?

(3-2) Consider again the transient response. In chart form for the three cases of R, compare
your calculated and measured voltage VTP, frequency ωT and decay rate αT. How do
the measured and calculated parameters compare? Next, utilize the calibrated values of
the network elements, including the parasitic resistance of the inductor, to re-calculate the
parameters. Include the new parameters in the chart. Do the new parameters compare more
favorably with the measured parameters? Do the new parameters explain the differences
observed in Post-Lab Exercise 3-1?

(3-3) First, convert the amplitudes of vOUT measured in sinusoidal steady state to measurements
of HS(ωS) by dividing the measured amplitudes by the 10 V amplitude of vIN. Second, con-
vert the zero-crossing time differences measured in sinusoidal steady state to measurements
of φS(ωS) by dividing the time differences by the corresponding waveform period, and then
multiplying by 360 degrees. Finally, plot the frequency response data on the corresponding
graph prepared during the pre-lab exercises. How well does the measured data match the
theoretical graph? That is, how do they differ?

(3-4) Consider again the frequency response. In chart form for the three cases of R, compare
your calculated and measured peak voltage ratio HSP, frequency ωSP and Q. How do
the measured and calculated parameters compare? Next, utilize the calibrated values of
the network elements, including the parasitic resistance of the inductor, to re-calculate the
parameters. Include the new parameters in the chart. Do the new parameters compare more
favorably with the measured parameters? Do the new parameters explain the differences
observed in Post-Lab Exercise 3-3?


