MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Problem Set 10

Issued: November 6, 2002
Due: November 13, 2002

Reading Assignment:

- A\&L Chapter 14 and Appendices B and C for Thursday, November 7.
- A\&L Chapter 15 for Tuesday, November 12.

Problem 10.1:

Figure 1: Circuit for Problem 10.1
(A) In the network shown in Figure $1, i_{S}(t)=I_{S} u(t)$ and $v_{C}\left(0^{-}\right)=i_{L}\left(0^{-}\right)=0$. Find $i_{L}(t)$.
(B) Repeat part (A) for $i_{S}(t)=0, v_{C}\left(0^{-}\right)=0$ and $i_{L}\left(0^{-}\right)=I_{L}$.
(C) Repeat part (A) for $i_{S}(t)=I_{S} u(t), v_{C}\left(0^{-}\right)=0$ and $i_{L}\left(0^{-}\right)=I_{L}$.

If you have done parts (A)-(C) correctly, you will have found that the solution to part (C) is the sum of the solutions to parts (A) and (B). This is not a coincidence, but instead a general property of the solutions to LCCODE's.

The response in a network driven by sources but with zero initial conditions is known as a zero-state response. The response of the same network with the sources set to zero but with non-zero initial conditions is known as the zero-input response. This problem illustrates the general principle that the response of a network driven by sources with non-zero initial conditions is the superposition of the zero-state response and the zero-input response.

Problem 10.2:

Figure 2: Circuit for Problem 10.2
(A) Find a differential equation relating $v_{O}(t)$ to $v_{S}(t)$ in the circuit of Figure 2.
(B) Determine a forced solution to the complex voltage source $v_{S f}(t)=V_{s} e^{j \omega t}$. Denote your answer by $v_{O f}(t)$.
(C) In part (B), you have determined a forced response to the complex source $v_{S f}(t)$. Symbolically, $v_{S f}(t) \rightarrow v_{O f}(t)$. For LCCODE's with real coefficients, $\operatorname{Re}\left\{v_{S f}(t)\right\} \rightarrow \operatorname{Re}\left\{v_{O f}(t)\right\}$, i.e., a forced response to $\operatorname{Re}\left\{v_{S f}(t)\right\}$ is $\operatorname{Re}\left\{v_{O f}(t)\right\}$. Use this result to find the forced response to $\operatorname{Re}\left\{v_{S f}(t)\right\}=V_{s} \cos \omega t$. Put your results in the form $v_{O}(t)=V_{o} \cos (\omega t+\theta)$.

Problem 10.3:

Figure 3: Circuits for Problem 10.3
(A) (i) Find the complex impedance $Z=V / I$ in Figure 3(i).
(ii) Find the complex admittance $Y=I / V$ in Figure 3(ii).
(iii) Find the complex transfer function $H(j \omega)=I_{2} / I_{1}$ in Figure 3(iii).
(iv) Find the complex transfer function $H(j \omega)=V_{2} / V_{1}$ in Figure 3(iv).
(B) In the circuit of Figure 3(iii), the current $i_{1}(t)=I \cos \omega t$. Find the steady-state current $i_{2}(t)$.
(C) In the circuit of Figure 3(iv), the voltage $v_{1}(t)=V \sin \omega t$. Determine the steady-state voltage $v_{2}(t)$. Evaluate your result for the special case $L / R_{1}=R_{2} C$

Problem 10.4:

Figure 4: Networks for Problem 10.4

The network N shown schematically in Figure 4(a) is composed of resistors, inductors, capacitors, and sinusoidal sources. With the terminal pair open-circuited, the voltage $v=10 \mathrm{~V} \sin \left(10^{4} t\right)$ is measured at the indicated terminal pair. When the terminal pair is short-circuited, the current $i=5 m A \sin \left(10^{4} t-\pi / 6\right)$ is measured. (For both open and short-circuit measurements, the same reference signal at frequency $\omega=10^{4}$ was used to define the phase.)
(A) The circuit of Figure $4(\mathrm{~b})$ is proposed as a Thévenin equivalent to represent the circuit behavior at the indicated terminal pair. Note that this representation is valid only for the complex amplitudes of v and i at the frequency $\omega=10^{4}$. Determine V_{t} and Z_{t}.
(B) A $0.05 \mu F$ capacitor is placed across the terminals of the network in Figure 4(a). Find $i(t)$.

Problem 10.5: In communication and RF systems, a technique called matching is used in order to extract the maximum power from a source with a given source resistance (or impedance). In this problem, we'll explore the motivation for matching a load to a source and then illustrate a method by which this can be done, at least for a narrow range of frequencies.

Figure 5: Circuit for Problem 10.5(A) and (B)
(A) Figure 5 shows a source with a given source resistance connected to a load. Calculate the power delivered to the load R_{L} and show that this is maximized when R_{L} is chosen to be equal to R_{S}. What is the maximum power that is then available to be delivered to the load?
(B) Show that the time-averaged power dissipated in a resistor R in the sinusoidal steady-state is $\frac{1}{2}|I|^{2} R$ where I is the complex amplitude of the current in the resistor.

Figure 6: Circuit for Problem 10.5(C)
(C) Figure 6 shows a source with a source resistance R_{S} connected to a load $Z_{L}=R_{L}+j X_{L}$. The circuit is operating in the sinusoidal steady-state and is therefore drawn in a form appropriate for determining the complex amplitudes of the current and voltage. Show that the maximum power delivered to the load occurs for $R_{L}=R_{S}$ and $X_{L}=0$.

Figure 7: Circuit for Problem 10.5(D)
(D) Figure 7 shows a load R_{L} connected to a source with a source resistance R_{S}. It is proposed to insert the L-C section between load and source in order to match the load to the source, i.e., to cause the impedance seen by the source to be R_{S}.
(i) Calculate the impedance formed by the parallel combination of the resistor and capacitor. Put your result in the form $Z=R+j X$.
(ii) Assume that $R_{L}>R_{S}$. Calculate a value for the capacitor C (actually for ωC) for which the impedance seen by the source will have a real part equal to R_{S}.
(iii) Calculate the value of the inductance L for which the impedance seen by the source will be $R_{S}+j 0$.

From this problem, you have found that a load R_{L} that is greater than a source resistance R_{S} can always be transformed to the source resistance R_{S} by inserting an L-C network between source and load. What change in the L-C network should be made to match a load whose resistance is less than a source resistance?

