Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Homework \#10 Solutions

Problem 10.1 Answer:

(A) From previous problems, we know that $i_{L}\left(0^{+}\right)=0$ because the inductor current will not change instantaneously. We have also shown in lecture that the peak inductor current will be twice the source current I_{S}, and the circuit will ring at $\omega=\frac{1}{\sqrt{L C}}$. Given this information, we can write

$$
i_{L}(t)=I_{S}\left[1-\cos \left(\frac{t}{\sqrt{L C}}\right)\right]
$$

(B) Again, we can write the answer for this problem down directly. We know that $\omega=\frac{1}{\sqrt{L C}}$, $i_{L}\left(0^{+}\right)=I_{L}$, and that the peak value of $i_{L}(t)=I_{L}$. Given this we can write

$$
i_{L}(t)=I_{L}\left[\cos \left(\frac{t}{\sqrt{L C}}\right)\right]
$$

(C) The solution for $i_{L}(t)$ has the general form

$$
i_{L}(t)=\underbrace{A e^{j \frac{t}{\sqrt{L C}}}+B e^{-j \frac{t}{\sqrt{L C}}}}_{\text {Homogeneous Solution }}+\underbrace{I_{S}}_{\text {Particular Solution }}
$$

We know that $i_{L}\left(0^{+}\right)=I_{L}$ because the inductor current is continuous. Additionally, from $t=0^{-} \rightarrow 0^{+}$the capacitor voltage stays constant at $t=0$ because there is not a source of infinite current in the circuit. So $\frac{d}{d t} i_{L}\left(0^{+}\right)=0$ because $v_{C}(t)=v_{L}(t)=L \frac{d i_{L}(t)}{d t}$. Given this, we can write

$$
I_{L}-I_{S}=A+B \quad \text { and } \quad 0=\frac{j A}{\sqrt{L C}}-\frac{j B}{\sqrt{L C}}
$$

From this we know that $A=B$, and so $A=B=\frac{I_{L}-I_{S}}{2}$. We can now expand the general solution above using Euler's formula and the facts that $\cos (x)=\cos (-x)$ and $\sin (x)=-\sin (-x)$ to find

$$
\begin{aligned}
i_{L}(t) & =\frac{I_{L}-I_{S}}{2}\left[\cos \left(\frac{t}{\sqrt{L C}}\right)+j \sin \left(\frac{t}{\sqrt{L C}}\right)+\cos \left(-\frac{t}{\sqrt{L C}}\right)+j \sin \left(-\frac{t}{\sqrt{L C}}\right)\right]+I_{S} \\
& =\frac{I_{L}-I_{S}}{2}\left[2 \cos \left(\frac{t}{\sqrt{L C}}\right)+j \sin \left(\frac{t}{\sqrt{L C}}\right)-j \sin \left(\frac{t}{\sqrt{L C}}\right)\right]+I_{S} \\
& =\left(I_{L}-I_{S}\right) \cos \left(\frac{t}{\sqrt{L C}}\right)+I_{S} \\
& =I_{S}\left[1-\cos \left(\frac{t}{\sqrt{L C}}\right)\right]+I_{L}\left[\cos \left(\frac{t}{\sqrt{L C}}\right)\right]
\end{aligned}
$$

This is the sum of the answers we arrived at in Parts (A) and (B).

Problem 10.2 Answer:

(A) Writing KCL where R_{1}, R_{2} and C meet gives

$$
\frac{v_{S}-v_{O}}{R_{1}}+C \frac{d}{d t}\left(v_{S}-v_{O}\right)=\frac{v_{O}}{R_{2}}
$$

This can be re-arranged to give

$$
\frac{d v_{O}}{d t}+\frac{v_{O}}{C\left(R_{1} \| R_{2}\right)}=\frac{d v_{S}}{d t}+\frac{v_{S}}{C R_{1}}
$$

(B) Substituting $v_{S f}(t)=V_{S} e^{j \omega t}$ into the differential equation above and guessing a solution of the form $v_{O f}(t)=V_{O} e^{j \omega t}$ we find

$$
\begin{aligned}
V_{O} j \omega e^{j \omega t}+\frac{V_{O} e^{j \omega t}}{C\left(R_{1}| | R_{2}\right)} & =V_{S} j \omega e^{j \omega t}+\frac{V_{S} e^{j \omega t}}{C R_{1}} \\
V_{O}\left(j \omega+\frac{1}{C\left(R_{1} \| R_{2}\right)}\right) & =V_{S}\left(j \omega+\frac{1}{C R_{1}}\right) \\
V_{O} & =V_{S} \frac{j \omega+\frac{1}{C R_{1}}}{j \omega+\frac{R_{1}+R_{2}}{\left.C R_{1} R_{2}\right)}} \\
V_{O} & =V_{S} \frac{R_{2}+j \omega C R_{1} R_{2}}{\left(R_{1}+R_{2}\right)+j \omega C R_{1} R_{2}}
\end{aligned}
$$

(C) The solution is $v_{O}(t)=\left|V_{O}\right| \cos \left(\omega t+\angle V_{O}\right)$ where V_{O} is the complex quantity obtained above. The forced response to $v_{S}(t)=V_{S} \cos (\omega t)$ is

$$
V_{S} \frac{\sqrt{R_{2}^{2}+\left(\omega C R_{1} R_{2}\right)^{2}}}{\sqrt{\left(R_{1}+R_{2}\right)^{2}+\left(\omega C R_{1} R_{2}\right)^{2}}} \cos \left(\omega t+\tan ^{-1}\left(\omega C R_{1}\right)-\tan ^{-1}\left(\frac{\omega C R_{1} R_{2}}{R_{1}+R_{2}}\right)\right)
$$

This is in the form requested, where

$$
V_{o}=V_{S} \frac{\sqrt{R_{2}^{2}+\left(\omega C R_{1} R_{2}\right)^{2}}}{\sqrt{\left(R_{1}+R_{2}\right)^{2}+\left(\omega C R_{1} R_{2}\right)^{2}}} \quad \text { and } \quad \theta=\tan ^{-1}\left(\omega C R_{1}\right)-\tan ^{-1}\left(\frac{\omega C R_{1} R_{2}}{R_{1}+R_{2}}\right)
$$

Problem 10.3 Answer:

(A) (i) The total impedance is the parallel combination of R and $\frac{1}{C j \omega}$. This is

$$
Z=\frac{R}{R C j \omega+1}
$$

(ii) Admittances in parallel add, so

$$
Y=C j \omega+\frac{1}{R_{2}}+\frac{1}{R_{1}+L j \omega}
$$

(iii) We can use the current divider relationship to find that $I_{2}=I_{1} \frac{R+L j \omega}{R+L j \omega+\frac{1}{C j \omega}}$. From this:

$$
H(j \omega)=\frac{C j \omega(R+L j \omega)}{C j \omega(R+L j \omega)+1}
$$

(iv) Let $V_{2}=V_{2}^{+}-V_{2}^{-}$. Using the voltage divider relationship we can write

$$
\begin{aligned}
V_{2}^{+} & =\frac{L j \omega}{L j \omega+R_{1}} V_{1} \\
V_{2}^{-} & =\frac{R_{2} C j \omega}{R_{2} C j \omega+1} V_{1}
\end{aligned}
$$

From this we find

$$
H(j \omega)=\frac{L j \omega}{L j \omega+R_{1}}-\frac{R_{2} C j \omega}{R_{2} C j \omega+1}=\frac{j \omega\left(L-R_{1} R_{2} C\right)}{R_{1}-R_{2} L C \omega^{2}+j \omega\left(L+R_{1} R_{2} C\right)}
$$

(B) Express the input current $i_{1}(t)$ as $\Re\left\{I e^{j \omega t}\right\}$. We can express $i_{2}(t)$ then as $\Re\left\{H(j \omega) I e^{j \omega t}\right\}$.

$$
\begin{aligned}
i_{2}(t) & =\Re\left\{H(j \omega) I e^{j \omega t}\right\} \\
& =I \Re\left\{\frac{C j \omega(R+L j \omega)}{C j \omega(R+L j \omega)+1} e^{j \omega t}\right\} \\
& =I \Re\left\{\frac{-L C \omega^{2}+R C j \omega}{1-L C \omega^{2}+R C j \omega} e^{j \omega t}\right\} \\
& =I \frac{\sqrt{\left(L C \omega^{2}\right)^{2}+(R C \omega)^{2}}}{\sqrt{\left(1-L C \omega^{2}\right)^{2}+(R C \omega)^{2}}} \Re\left\{e^{j \tan ^{-1}\left(-\frac{R}{L \omega}\right)-j \tan ^{-1}\left(\frac{R C \omega}{1-L C \omega^{2}}\right)} e^{j \omega t}\right\} \\
& =I \frac{\sqrt{\left(L C \omega^{2}\right)^{2}+(R C \omega)^{2}}}{\sqrt{\left(1-L C \omega^{2}\right)^{2}+(R C \omega)^{2}}} \cos \left(\omega t-\tan ^{-1}\left(\frac{R}{L \omega}\right)-\tan ^{-1}\left(\frac{R C \omega}{1-L C \omega^{2}}\right)\right)
\end{aligned}
$$

(C) Again, we can re-express $v_{1}(t)$ as $\Im\left\{V e^{j \omega t}\right\}$. So

$$
\begin{aligned}
v_{2}(t)= & V \Im\left\{H(j \omega) e^{j \omega t}\right\} \\
= & V \Im\left\{\left(\frac{j \omega\left(L-R_{1} R_{2} C\right)}{R_{1}-R_{2} L C \omega^{2}+j \omega\left(L+R_{1} R_{2} C\right)}\right) e^{j \omega t}\right\} \\
= & V \frac{\omega\left(L-R_{1} R_{2} C\right)}{\sqrt{\left(R_{1}-R_{2} L C \omega^{2}\right)^{2}+\left(\omega\left(L+R_{1} R_{2} C\right)\right)^{2}}} \Im\left\{e^{j \omega t+j \tan ^{-1}\left(\frac{L-R_{1} R_{2} C}{0}\right)-j \tan ^{-1}\left(\frac{\omega\left(L+R_{1} R_{2} C\right)}{R_{1}-R_{2} L C \omega^{2}}\right)}\right\} \\
= & V \frac{\omega\left(L-R_{1} R_{2} C\right)}{\sqrt{\left(R_{1}-R_{2} L C \omega^{2}\right)^{2}+\left(\omega\left(L+R_{1} R_{2} C\right)\right)^{2}}} * \\
& \sin \left(\omega t+\frac{\pi}{2}-\tan ^{-1}\left(\frac{\omega\left(L+R_{1} R_{2} C\right)}{R_{1}-R_{2} L C \omega^{2}}\right)\right)
\end{aligned}
$$

Given the special case $\frac{L}{R_{1}}=R_{2} C$, we can simplify the above expression. The numerator in the magnitude becomes

$$
\omega\left(L-R_{1} \frac{L}{R_{1}}\right)=0
$$

So $v_{2}(t)=0$.

Problem 10.4 Answer:

(A) When the terminal pair is open-circuited V_{t} is present at the output terminals, so

$$
V_{t}=10 \mathrm{~V} \sin \left(10^{4} t\right)
$$

When the terminal pair is short-circuited, we can find Z_{t} in the following manner. First, represent the Thévenin voltage as $V_{t}=10 \mathrm{~V} \Im\left\{e^{j 10^{4} t}\right\}$. Now, we can write:

$$
\begin{aligned}
5 \mathrm{~mA} \sin \left(10^{4} t-\frac{\pi}{6}\right) & =10 \mathrm{~V} \Im\left\{-\frac{1}{Z_{t}} e^{j 10^{4} t}\right\} \\
& =-\frac{10 \mathrm{~V}}{\left|Z_{t}\right|} \sin \left(10^{4} t-\angle Z_{t}\right) \\
& =\frac{10 \mathrm{~V}}{\left|Z_{t}\right|} \sin \left(10^{4} t+\pi-\angle Z_{t}\right)
\end{aligned}
$$

Given this, we can find $\left|Z_{t}\right|$ and $\angle Z_{t}$ as

$$
\left|Z_{t}\right|=2 \mathrm{k} \Omega \quad \text { and } \quad \angle Z_{t}=-\frac{5 \pi}{6}
$$

So we can write Z_{t} as

$$
Z_{t}=2 \mathrm{k} \Omega e^{-j \frac{5 \pi}{6}}=-1000(\sqrt{3}+j)
$$

(B) The impedance of the capacitor at $10^{4} \mathrm{rad} / \mathrm{s}$ is $Z_{C}=-2000 j \Omega$. The total impedance connected to V_{t} is then

$$
Z_{t}+Z_{C}=-1000(\sqrt{3}+3 j)
$$

The magnitude and phase of this impedance is

$$
\left|Z_{t}+Z_{C}\right|=2000 \sqrt{3} \quad \text { and } \quad \angle\left(Z_{t}+Z_{C}\right)=\tan ^{-1}(\sqrt{3})-\pi
$$

Given this, $i(t)$ is given by

$$
\begin{aligned}
i(t) & =-\frac{10 \mathrm{~V}}{\left|Z_{t}+Z_{C}\right|} \sin \left(10^{4} t-\angle\left(Z_{t}+Z_{C}\right)\right) \\
i(t) & =\frac{5 \sqrt{3}}{3} \mathrm{~mA} * \sin \left(10^{4} t+\pi+\pi-\tan ^{-1}(\sqrt{3})\right) \\
i(t) & =\frac{5 \sqrt{3}}{3} \sin \left(10^{4} t-\frac{\pi}{3}\right) \mathrm{mA}
\end{aligned}
$$

Problem 10.5 Answer:

(A) The power delivered to the resistor is equal to

$$
P_{R_{L}}=\frac{1}{2}\left(\frac{v_{S}}{R_{S}+R_{L}}\right)^{2} R_{L}
$$

Differentiating this with respect to R_{L} and setting it equal to zero gives:

$$
\begin{aligned}
& 0=\frac{d}{d R_{L}}\left[\frac{1}{2}\left(\frac{v_{S}}{R_{S}+R_{L}}\right)^{2} R_{L}\right] \\
& 0=\frac{v_{S}^{2}\left(R_{S}+R_{L}\right)^{2}-2 v_{S}^{2} R_{L}\left(R_{S}+R_{L}\right)}{2\left(R_{S}+R_{L}\right)^{2}} \\
& 0=\left(R_{S}+R_{L}\right)^{2}-2 R_{L}\left(R_{S}+R_{L}\right) \\
& 0=R_{S}-R_{L}
\end{aligned}
$$

So, when $R_{L}=R_{S}$ the power delivered to the resistor is at its maximum value.
(B) Let $\theta=\omega t$. The time average power dissipated by a resistor is

$$
\begin{aligned}
\bar{P}_{R} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}|I| \sin (\theta) *|I| R \sin (\theta) d \theta \\
& =\frac{|I|^{2} R}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(\theta) d \theta \\
& =\frac{|I|^{2} R}{2 \pi} * \pi \\
& =\frac{1}{2}|I|^{2} R
\end{aligned}
$$

(C) Only the real components of impedances dissipate energy, the complex pieces correspond to energy storage, not dissipation. The average power dissipation of Z_{L} is then

$$
\begin{aligned}
\bar{P}_{Z_{L}} & =\frac{\Re\left\{Z_{L}\right\}}{2 \pi} \int_{0}^{2 \pi} i_{L}(\theta) d \theta \\
& =\frac{\Re\left\{Z_{L}\right\}}{2 \pi} \int_{0}^{2 \pi}\left[\left|\frac{V_{S}}{R_{S}+Z_{L}}\right| \sin \left(\theta-\angle\left(R_{S}+Z_{L}\right)\right)\right]^{2} d \theta \\
& =\frac{\Re\left\{Z_{L}\right\}}{2 \pi}\left|\frac{V_{S}}{R_{S}+Z_{L}}\right|^{2} \int_{0}^{2 \pi}\left[\sin \left(\theta-\angle\left(R_{S}+Z_{L}\right)\right)\right]^{2} d \theta \\
& =\frac{\Re\left\{Z_{L}\right\}}{2}\left|\frac{V_{S}}{R_{S}+Z_{L}}\right|^{2} \\
& =\frac{R_{L}}{2} V_{S}^{2}\left|\frac{1}{\left(R_{S}+R_{L}\right)+j X_{L}}\right|^{2} \\
& =\frac{R_{L}}{2} V_{S}^{2} \frac{1}{\left(R_{S}+R_{L}\right)^{2}+X_{L}^{2}}
\end{aligned}
$$

From the expression above, we can see that $X_{L}=0$ maximizes the time-average power dissipated by the load. Now, find the value of R_{L} that maximizes of R_{L} is the following maximized:

$$
\bar{P}_{Z_{L}}=\frac{1}{2}\left(\frac{V_{S}}{R_{S}+R_{L}}\right)^{2} R_{L}
$$

This is the same problem we were asked to solve in Part (A), so we know the answer is $R_{L}=R_{S}$.
(D) (i) The parallel combination of the impedances of the resistor and capacitor is

$$
\begin{aligned}
Z & =R_{L} \| \frac{1}{j C \omega} \\
& =\frac{R_{L}}{1+j R_{L} C \omega} \\
& =\frac{R_{L}}{1+j R_{L} C \omega} * \frac{1-j R_{L} C \omega}{1-j R_{L} C \omega} \\
& =\frac{R_{L}\left(1-j R_{L} C \omega\right)}{1+\left(R_{L} C \omega\right)^{2}} \\
& =\frac{R_{L}}{1+\left(R_{L} C \omega\right)^{2}}-j \frac{R_{L}^{2} C \omega}{1+\left(R_{L} C \omega\right)^{2}}
\end{aligned}
$$

(ii) Set R_{S} equal to the real part of the answer above, and solve for ωC.

$$
\begin{aligned}
R_{S} & =\frac{R_{L}}{1+\left(R_{L} C \omega\right)^{2}} \\
\left(R_{L} C \omega\right)^{2} & =\frac{R_{L}}{R_{S}}-1 \\
C \omega & =\frac{1}{R_{L}} \sqrt{\frac{R_{L}}{R_{S}}-1} \\
C & =\frac{1}{\omega R_{L}} \sqrt{\frac{R_{L}}{R_{S}}-1}
\end{aligned}
$$

(iii) We want the sum of the inductor's impedance and the load impedance to equal R_{S}. The inductor's impedance is purely imaginary, so for the given $C \omega$ value in Part (ii) above, we want

$$
L \omega=\frac{R_{L}^{2} C \omega}{1+\left(R_{L} C \omega\right)^{2}}
$$

Substituting in our answer from above gives

$$
\begin{aligned}
L \omega & =\frac{R_{L} \sqrt{\frac{R_{L}}{R_{S}}-1}}{\frac{R_{L}}{R_{S}}} \\
L & =\frac{R_{S} \sqrt{\frac{R_{L}}{R_{S}}-1}}{\omega}
\end{aligned}
$$

If we wanted to match a load whose resistance is less than the source resistance, we need to "flip" the inductor and capacitor, as shown in the figure below.

