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Problem 10.1 Answer:

(A) From previous problems, we know that iL(0
+) = 0 because the inductor current will not change

instantaneously. We have also shown in lecture that the peak inductor current will be twice
the source current IS , and the circuit will ring at ω = 1√

LC
. Given this information, we can

write

iL(t) = IS

[

1− cos

(
t√
LC

)]

(B) Again, we can write the answer for this problem down directly. We know that ω = 1√
LC

,

iL(0
+) = IL, and that the peak value of iL(t) = IL. Given this we can write

iL(t) = IL

[

cos

(
t√
LC

)]

(C) The solution for iL(t) has the general form

iL(t) = Ae
j t√

LC +Be
−j t√

LC

︸ ︷︷ ︸

Homogeneous Solution

+ IS
︸︷︷︸

Particular Solution

We know that iL(0
+) = IL because the inductor current is continuous. Additionally, from

t = 0− → 0+ the capacitor voltage stays constant at t = 0 because there is not a source of
infinite current in the circuit. So d

dt
iL(0

+) = 0 because vC(t) = vL(t) = LdiL(t)
dt

. Given this,
we can write

IL − IS = A+B and 0 =
jA√
LC

− jB√
LC

From this we know that A = B, and so A = B = IL−IS
2 . We can now expand the general solu-

tion above using Euler’s formula and the facts that cos(x) = cos(−x) and sin(x) = − sin(−x)
to find

iL(t) =
IL − IS

2

[

cos

(
t√
LC

)

+ j sin

(
t√
LC

)

+ cos

(

− t√
LC

)

+ j sin

(

− t√
LC

)]

+ IS

=
IL − IS

2

[

2 cos

(
t√
LC

)

+ j sin

(
t√
LC

)

− j sin

(
t√
LC

)]

+ IS

= (IL − IS) cos

(
t√
LC

)

+ IS

= IS

[

1− cos

(
t√
LC

)]

+ IL

[

cos

(
t√
LC

)]

This is the sum of the answers we arrived at in Parts (A) and (B).



Problem 10.2 Answer:

(A) Writing KCL where R1, R2 and C meet gives

vS − vO
R1

+ C
d

dt
(vS − vO) =

vO
R2

This can be re-arranged to give

dvO
dt

+
vO

C(R1||R2)
=

dvS
dt

+
vS
CR1

(B) Substituting vSf (t) = VSe
jωt into the differential equation above and guessing a solution of the

form vOf (t) = VOe
jωt we find

VOjωe
jωt +

VOe
jωt

C(R1||R2)
= VSjωe

jωt +
VSe

jωt

CR1

VO

(

jω +
1

C(R1||R2)

)

= VS

(

jω +
1

CR1

)

VO = VS
jω + 1

CR1

jω + R1+R2
CR1R2)

VO = VS
R2 + jωCR1R2

(R1 +R2) + jωCR1R2

(C) The solution is vO(t) = |VO| cos(ωt+ 6 VO) where VO is the complex quantity obtained above.
The forced response to vS(t) = VS cos(ωt) is

VS

√

R2
2 + (ωCR1R2)2

√

(R1 +R2)2 + (ωCR1R2)2
cos

(

ωt+ tan−1 (ωCR1)− tan−1

(
ωCR1R2

R1 +R2

))

This is in the form requested, where

Vo = VS

√

R2
2 + (ωCR1R2)2

√

(R1 +R2)2 + (ωCR1R2)2
and θ = tan−1 (ωCR1)− tan−1

(
ωCR1R2

R1 +R2

)

Problem 10.3 Answer:

(A) (i) The total impedance is the parallel combination of R and 1
Cjω

. This is

Z =
R

RCjω + 1

(ii) Admittances in parallel add, so

Y = Cjω +
1

R2
+

1

R1 + Ljω



(iii) We can use the current divider relationship to find that I2 = I1
R+Ljω

R+Ljω+ 1
Cjω

. From this:

H(jω) =
Cjω(R+ Ljω)

Cjω(R+ Ljω) + 1

(iv) Let V2 = V +
2 − V −2 . Using the voltage divider relationship we can write

V +
2 =

Ljω

Ljω +R1
V1

V −2 =
R2Cjω

R2Cjω + 1
V1

From this we find

H(jω) =
Ljω

Ljω +R1
− R2Cjω

R2Cjω + 1
=

jω(L−R1R2C)

R1 −R2LCω2 + jω(L+R1R2C)

(B) Express the input current i1(t) as <
{
Iejωt

}
. We can express i2(t) then as <{H(jω)Iejωt}.

i2(t) = <{H(jω)Iejωt}

= I<
{

Cjω(R+ Ljω)

Cjω(R+ Ljω) + 1
ejωt

}

= I<
{ −LCω2 +RCjω

1− LCω2 +RCjω
ejωt

}

= I

√

(LCω2)2 + (RCω)2
√

(1− LCω2)2 + (RCω)2
<
{

e
j tan−1(− R

Lω )−j tan−1
(

RCω

1−LCω2

)

ejωt
}

= I

√

(LCω2)2 + (RCω)2
√

(1− LCω2)2 + (RCω)2
cos

(

ωt− tan−1

(
R

Lω

)

− tan−1

(
RCω

1− LCω2

))

(C) Again, we can re-express v1(t) as ={V ejωt}. So

v2(t) = V =
{
H(jω)ejωt

}

= V =
{(

jω(L−R1R2C)

R1 −R2LCω2 + jω(L+R1R2C)

)

ejωt
}

= V
ω(L−R1R2C)

√

(R1 −R2LCω2)2 + (ω(L+R1R2C))2
=
{

e
jωt+j tan−1

(
L−R1R2C

0

)

−j tan−1
(
ω(L+R1R2C)

R1−R2LCω
2

)}

= V
ω(L−R1R2C)

√

(R1 −R2LCω2)2 + (ω(L+R1R2C))2
∗

sin

(

ωt+
π

2
− tan−1

(
ω(L+R1R2C)

R1 −R2LCω2

))

Given the special case L
R1

= R2C, we can simplify the above expression. The numerator in the
magnitude becomes

ω(L−R1
L

R1
) = 0

So v2(t) = 0.



Problem 10.4 Answer:

(A) When the terminal pair is open-circuited Vt is present at the output terminals, so

Vt = 10V sin(104t)

When the terminal pair is short-circuited, we can find Zt in the following manner. First,

represent the Thévenin voltage as Vt = 10V=
{

ej10
4t
}

. Now, we can write:

5mA sin
(

104t− π

6

)

= 10V=
{

− 1

Zt
ej10

4t

}

= −10V

|Zt|
sin
(
104t− 6 Zt

)

=
10V

|Zt|
sin
(
104t+ π − 6 Zt

)

Given this, we can find |Zt| and 6 Zt as

|Zt| = 2kΩ and 6 Zt = −5π

6

So we can write Zt as

Zt = 2kΩe−j
5π
6 = −1000(

√
3 + j)

(B) The impedance of the capacitor at 104rad/s is ZC = −2000jΩ. The total impedance connected
to Vt is then

Zt + ZC = −1000(
√
3 + 3j)

The magnitude and phase of this impedance is

|Zt + ZC | = 2000
√
3 and 6 (Zt + ZC) = tan−1(

√
3)− π

Given this, i(t) is given by

i(t) = − 10V

|Zt + ZC |
sin
(
104t− 6 (Zt + ZC)

)

i(t) =
5
√
3

3
mA ∗ sin

(

104t+ π + π − tan−1(
√
3)
)

i(t) =
5
√
3

3
sin
(

104t− π

3

)

mA



Problem 10.5 Answer:

(A) The power delivered to the resistor is equal to

PRL =
1

2

(
vS

RS +RL

)2

RL

Differentiating this with respect to RL and setting it equal to zero gives:

0 =
d

dRL

[

1

2

(
vS

RS +RL

)2

RL

]

0 =
v2
S(RS +RL)

2 − 2v2
SRL(RS +RL)

2(RS +RL)2

0 = (RS +RL)
2 − 2RL(RS +RL)

0 = RS −RL

So, when RL = RS the power delivered to the resistor is at its maximum value.

(B) Let θ = ωt. The time average power dissipated by a resistor is

PR =
1

2π

∫ 2π

0
|I| sin(θ) ∗ |I|R sin(θ)dθ

=
|I|2R
2π

∫ 2π

0
sin2(θ)dθ

=
|I|2R
2π

∗ π

=
1

2
|I|2R

(C) Only the real components of impedances dissipate energy, the complex pieces correspond to
energy storage, not dissipation. The average power dissipation of ZL is then

PZL =
<{ZL}
2π

∫ 2π

0
iL(θ)dθ

=
<{ZL}
2π

∫ 2π

0

[∣
∣
∣
∣

VS
RS + ZL

∣
∣
∣
∣
sin(θ − 6 (RS + ZL))

]2

dθ

=
<{ZL}
2π

∣
∣
∣
∣

VS
RS + ZL

∣
∣
∣
∣

2 ∫ 2π

0
[sin(θ − 6 (RS + ZL))]

2 dθ

=
<{ZL}

2

∣
∣
∣
∣

VS
RS + ZL

∣
∣
∣
∣

2

=
RL

2
V 2
S

∣
∣
∣
∣

1

(RS +RL) + jXL

∣
∣
∣
∣

2

=
RL

2
V 2
S

1

(RS +RL)2 +X2
L



From the expression above, we can see that XL = 0 maximizes the time-average power dissi-
pated by the load. Now, find the value of RL that maximizes of RL is the following maximized:

PZL =
1

2

(
VS

RS +RL

)2

RL

This is the same problem we were asked to solve in Part (A), so we know the answer is RL = RS .

(D) (i) The parallel combination of the impedances of the resistor and capacitor is

Z = RL||
1

jCω

=
RL

1 + jRLCω

=
RL

1 + jRLCω
∗ 1− jRLCω

1− jRLCω

=
RL(1− jRLCω)

1 + (RLCω)2

=
RL

1 + (RLCω)2
− j

R2
LCω

1 + (RLCω)2

(ii) Set RS equal to the real part of the answer above, and solve for ωC.

RS =
RL

1 + (RLCω)2

(RLCω)
2 =

RL

RS
− 1

Cω =
1

RL

√

RL

RS
− 1

C =
1

ωRL

√

RL

RS
− 1

(iii) We want the sum of the inductor’s impedance and the load impedance to equal RS . The
inductor’s impedance is purely imaginary, so for the given Cω value in Part (ii) above, we
want

Lω =
R2
LCω

1 + (RLCω)2

Substituting in our answer from above gives

Lω =
RL

√
RL
RS

− 1

RL
RS

L =
RS

√
RL
RS

− 1

ω



If we wanted to match a load whose resistance is less than the source resistance, we need to
“flip” the inductor and capacitor, as shown in the figure below.

+
−Vs

RS

RL<RSC

L


