Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Electronic Circuits Fall 2002

Homework #1 Solutions

Exercise 1.1:

Answer: A complex number of the form a + bj can be rewritten as $\sqrt{a^2 + b^2}e^{j\tan^{-1}\frac{b}{a}}$. Using this fact, we can rewrite x(t) as

$$\frac{\sqrt{a^2+b^2}e^{j\tan^{-1}\frac{b}{a}}}{\sqrt{c^2+d^2}e^{j\tan^{-1}\frac{d}{c}}}e^{j\omega t}$$

Combining the exponentials together gives

$$\frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}}e^{j\left(\omega t+\tan^{-1}\frac{b}{a}-\tan^{-1}\frac{d}{c}\right)}$$

Using Euler's formula we can write out the real part of the above expression such that

$$\Re\{x(t)\} = M\cos(\omega t + \phi)$$

where

$$M = \frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}} \text{ and } \phi = \tan^{-1}\frac{b}{a} - \tan^{-1}\frac{d}{c}$$

Exercise 1.2:

Answer: The solution to a first-order linear differential equation is the sum of a particular solution, and a homogeneous solution of the form Ae^{st} . The forcing term b is a constant, so the particular solution that solves this differential equation is a constant, M. Substituting this into the differential equation yields

$$0 + aM = b$$

so $M = \frac{b}{a}$.

The exponent-part of the homogeneous solution is determined by the differential equation. Substituting our general solution into the equations gives

$$Ase^{st} + aAe^{st} = 0$$

Canceling the Ae^{st} terms gives s = -a. The scalar A is determined by the initial conditions. Setting our solution $\frac{b}{a} + Ae^{-at}\Big|_{t=0} = c$ and solving for A gives the final solution

$$x(t) = \frac{b}{a} + \left(c - \frac{b}{a}\right)e^{-at}$$

Problem 1.1:

Answer:

(A) There are three nodes in this circuit, which means we will have two independent KCL equations. The three dependent equations are are:

$$i_1 - i_2 - i_3 = 0$$

$$i_3 - i_1 - i_4 = 0$$

$$i_2 + i_4 = 0$$

(B) There are three loops in the circuit, which means we will have two independent KVL equations. The three dependent equations are are:

$$v_1 + v_3 = 0$$

$$v_4 - v_2 - v_1 = 0$$

$$v_3 + v_4 - v_2 = 0$$

(C) The v - i constraints for each element are as follows

$$i_3 = I_S$$

 $v_4 = V_S$
 $v_1 = R_1 i_1$
 $v_2 = R_2 i_2$

(D) Solving the system of linear equations yields:

(E) The sum is zero. $I_{\rm S}$ supplies power, while $V_{\rm S}$ is absorbing power.

Problem 1.2:

Answer:

(A) Again, we have three nodes, and two independent equations.

$$i_1 - i_2 - i_3 = 0$$

$$i_3 - i_1 - i_4 = 0$$

$$i_2 + i_4 = 0$$

(B) Again, we have three loops, and two independent equations.

$$v_1 + v_3 = 0$$

$$v_4 - v_2 - v_1 = 0$$

$$v_3 + v_4 - v_2 = 0$$

(C) The v - i constraints are

$$v_1 = R_1 i_1$$

 $v_2 = V_S$
 $v_3 = R_3 i_3$
 $v_4 = R_4 i_4$

(D) Solving the system of equations yields

(E) Again, the individual powers sum to zero, and we find that $V_{\rm S}$ supplies power.

Problem 1.3:

Answer: Here's the table:

Voltage from Problem 1.1			Current from Problem 1.2			Resulting $v - i$ products		
v_1	= 5 V	V	i_1	=	-1 A	$v_1 i_1$	=	-5 W
v_2	= -2	V	i_2	=	-2 A	$v_2 i_2$	=	$4 \mathrm{W}$
v_3	= -5	V	i_3	=	1 A	$v_3 i_3$	=	-5 W
v_4	= 3	V	i_4	=	2 A	$v_4 i_4$	=	6 W

The resulting sum of the v - i products is 0 W.