Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Homework \#1 Solutions

Exercise 1.1:

Answer: A complex number of the form $a+b j$ can be rewritten as $\sqrt{a^{2}+b^{2}} e^{j \tan ^{-1} \frac{b}{a}}$. Using this fact, we can rewrite $x(t)$ as

$$
\frac{\sqrt{a^{2}+b^{2}} e^{j \tan ^{-1} \frac{b}{a}}}{\sqrt{c^{2}+d^{2}} e^{j \tan ^{-1} \frac{d}{c}}} e^{j \omega t}
$$

Combining the exponentials together gives

$$
\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} e^{j\left(\omega t+\tan ^{-1} \frac{b}{a}-\tan ^{-1} \frac{d}{c}\right)}
$$

Using Euler's formula we can write out the real part of the above expression such that

$$
\Re\{x(t)\}=M \cos (\omega t+\phi)
$$

where

$$
M=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \text { and } \phi=\tan ^{-1} \frac{b}{a}-\tan ^{-1} \frac{d}{c}
$$

Exercise 1.2:

Answer: The solution to a first-order linear differential equation is the sum of a particular solution, and a homogeneous solution of the form $A e^{s t}$. The forcing term b is a constant, so the particular solution that solves this differential equation is a constant, M. Substituting this into the differential equation yields

$$
0+a M=b
$$

so $M=\frac{b}{a}$.
The exponent-part of the homogeneous solution is determined by the differential equation. Substituting our general solution into the equations gives

$$
A s e^{s t}+a A e^{s t}=0
$$

Canceling the $A e^{s t}$ terms gives $s=-a$. The scalar A is determined by the initial conditions. Setting our solution $\frac{b}{a}+\left.A e^{-a t}\right|_{t=0}=c$ and solving for A gives the final solution

$$
x(t)=\frac{b}{a}+\left(c-\frac{b}{a}\right) e^{-a t}
$$

Problem 1.1:

Answer:

(A) There are three nodes in this circuit, which means we will have two independent KCL equations.

The three dependent equations are are:

$$
\begin{aligned}
i_{1}-i_{2}-i_{3} & =0 \\
i_{3}-i_{1}-i_{4} & =0 \\
i_{2}+i_{4} & =0
\end{aligned}
$$

(B) There are three loops in the circuit, which means we will have two independent KVL equations. The three dependent equations are are:

$$
\begin{aligned}
v_{1}+v_{3} & =0 \\
v_{4}-v_{2}-v_{1} & =0 \\
v_{3}+v_{4}-v_{2} & =0
\end{aligned}
$$

(C) The $v-i$ constraints for each element are as follows

$$
\begin{aligned}
i_{3} & =I_{\mathrm{S}} \\
v_{4} & =V_{\mathrm{S}} \\
v_{1} & =R_{1} i_{1} \\
v_{2} & =R_{2} i_{2}
\end{aligned}
$$

(D) Solving the system of linear equations yields:
$v_{1}=5 \mathrm{~V} i_{1}=2.5 \mathrm{~A} \quad v_{1} i_{1}=12.5 \mathrm{~W}$
$v_{2}=-2 \mathrm{~V} i_{2}=-.5 \mathrm{~A} v_{2} i_{2}=1 \mathrm{~W}$
$v_{3}=-5 \mathrm{~V} i_{3}=3 \mathrm{~A} \quad v_{3} i_{3}=-15 \mathrm{~W}$
$v_{4}=3 \mathrm{~V} i_{4}=.5 \mathrm{~A} \quad v_{4} i_{4}=1.5 \mathrm{~W}$
(E) The sum is zero. I_{S} supplies power, while V_{S} is absorbing power.

Problem 1.2:

Answer:

(A) Again, we have three nodes, and two independent equations.

$$
\begin{array}{r}
i_{1}-i_{2}-i_{3}=0 \\
i_{3}-i_{1}-i_{4}=0 \\
i_{2}+i_{4}=0
\end{array}
$$

(B) Again, we have three loops, and two independent equations.

$$
\begin{aligned}
v_{1}+v_{3} & =0 \\
v_{4}-v_{2}-v_{1} & =0 \\
v_{3}+v_{4}-v_{2} & =0
\end{aligned}
$$

(C) The $v-i$ constraints are

$$
\begin{aligned}
& v_{1}=R_{1} i_{1} \\
& v_{2}=V_{\mathrm{S}} \\
& v_{3}=R_{3} i_{3} \\
& v_{4}=R_{4} i_{4}
\end{aligned}
$$

(D) Solving the system of equations yields
$v_{1}=-1 \mathrm{~V} i_{1}=-1 \mathrm{~A} v_{1} i_{1}=1 \mathrm{~W}$
$v_{2}=3 \mathrm{~V} i_{2}=-2 \mathrm{~A} v_{2} i_{2}=-6 \mathrm{~W}$
$v_{3}=1 \mathrm{~V} i_{3}=1 \mathrm{~A} v_{3} i_{3}=1 \mathrm{~W}$
$v_{4}=2 \mathrm{~V} i_{4}=2 \mathrm{~A} v_{4} i_{4}=4 \mathrm{~W}$
(E) Again, the individual powers sum to zero, and we find that V_{S} supplies power.

Problem 1.3:

Answer: Here's the table:
Voltage from Problem 1.1 Current from Problem 1.2 Resulting $v-i$ products

$$
\begin{array}{ll}
v_{1}=5 \mathrm{~V} & i_{1}=-1 \mathrm{~A} \\
v_{2}=-2 \mathrm{~V} & i_{2}=-2 \mathrm{~A} \\
v_{3}=-5 \mathrm{~V} & i_{3}=1 \mathrm{~A} \\
v_{4}=3 \mathrm{~V} & i_{4}=2 \mathrm{~A}
\end{array}
$$

$v_{1} i_{1}=-5 \mathrm{~W}$ $v_{2} i_{2}=4 \mathrm{~W}$
$v_{3} i_{3}=-5 \mathrm{~W}$
$v_{4} i_{4}=6 \mathrm{~W}$

The resulting sum of the $v-i$ products is 0 W .

