MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

### 6.002 - Electronic Circuits <br> Fall 2002

## Problem Set 2

Issued: September 11, 2002
Due: September 18, 2002

Reading Assignment:

- A\&L Sections 3.5-3.7 for Thursday, September 12.
- A\&L Chapter 4 for Tuesday, September 17.


## Problem 2.1:

(A) Calculate the Thévenin equivalent resistance at the indicated port for each of the networks shown in Figures 1 and 2.


Figure 1: Networks for Problem 2.1A


Figure 2: Networks for Problem 2.1A (cont.)
(B) The answers to part (iv) and (v) above suggest that as more and more $1 \Omega-2 \Omega$ sections are added to this "ladder" network, the Thévenin resistance converges to a definite limit. To find this limit, let $R_{N}$ be the resistance of $N 1 \Omega-2 \Omega$ sections, as indicated in Figure 3.


Figure 3: Network for Problem 2.1B
(i) Express $R_{N+1}$ in terms of $R_{N}$.
(ii) Set

$$
\lim _{N \rightarrow \infty} R_{N+1}=\lim _{N \rightarrow \infty} R_{N}=R_{\infty}
$$

and solve for $R_{\infty}$. Compare $R_{\infty}$ to the answers for networks $(i v)$ and $(v)$ above.

Problem 2.2: Find both Thévenin and Norton equivalents circuits at the indicated ports for the two networks shown below. Note that the results from Problem 2.1 may be useful in calculating $R_{T h}$, while voltage and current divider relations are useful in finding $V_{T h}$ or $I_{N}$.


Figure 4: Networks for Problem 2.2

Problem 2.3: The network shown schematically below contains an unknown number of resistors and sources in an unknown configuration. In order to develop a Thévenin equivalent for the mystery network at the indicated terminal pair, 6.002 student Sally Toolkit puts a $2 k \Omega$ resistor across the terminals and measures a current $i$ of $2 m A$. She then puts a $6 V$ battery across the terminal ( positive at the top terminal) and measures a current $i$ of $-1 m A$.


Figure 5: Networks for Problem 3
(A) From Sally's data, determine the Thévenin equivalent of the mystery network.
(B) A variable voltage source is placed across the terminals (positive reference at the top) and the source voltage is varied over the range -10 V to +10 V . Plot the current $i$ through the voltage source vs. the voltage as it is swept over this range.

Problem 2.4: Refer to the network shown below for parts (A) and (B).


Figure 6: Networks for Problem 2.4A\&B
(A) Write and solve a node equation determining the node voltage $e$.
(B) Find the node voltage $e$ using superposition, i.e., determine $e$ due to each source acting alone and add the results. Compare with the answer found in part (A).

Refer to the network shown below for parts (C) and (D).


Figure 7: Networks for Problem 2.4C\&D
(C) Write and solve node equations determining the node voltages $e_{1}$ and $e_{2}$.
(D) Solve for $e_{1}$ and $e_{2}$ using superposition and compare your results with those from part (C).

Notice that shortcut methods (series-parallel reductions, voltage-current divider relations) can often be used when the method of superposition is applied.

Problem 2.5: While most of the networks that we'll see in 6.002 can be solved by shortcut methods (series-parallel reductions, voltage-current divider relations), it will sometimes be the case that these methods cannot be applied and we must resort to the formal node method. The "bridged-T" network shown below is an example.


Figure 8: Networks for Problem 2.5
(A) Write a set of node equations for the node-to-datum voltages $e_{1}, e_{2}$ and $e_{3}$ in the above network. Put the equations in matrix form:

$$
G \cdot[e]=[s]
$$

where $G$ is a $3 \times 3$ matrix of conductance terms, $e$ is a vector containing the three node voltages $e_{1}, e_{2}$ and $e_{3}$, and $s$ is a vector containing source values.
(B) Solve these equations for the special case $G_{1}=G_{2} \ldots=G_{5}=1 \mathrm{mho}$.
(C) What is the Thévenin resistance seen by the source?

