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Problem 2.1 Answer:

(A) (i) To find the Thévenin resistance, first combine R2 and R3. Their resistances add because
they are in series with each other. This new resistor is in parallel with R1, so the total
equivalent resistance is

RTh =
R1(R2 + R3)
R1 + R2 + R3

(ii) We’re only asked to find the Thévenin resistance of the network. Any independent sources
in the network don’t affect the Thévenin resistance, so we can remove them. A voltage
source, when set to 0, becomes a wire, as shown in the figure below.
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The Thévenin resistance of this new circuit is just the series combination of R1||R2 and
R3||R4 which is equal to

RTh =
R1R2

R1 + R2
+

R3R4

R3 + R4

(iii) Like in part (ii), we can remove the independent source from this circuit. The resulting
circuit is drawn below. It’s been rearranged a little for clarity.
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The resistor R5 does not impact the Thévenin resistance, because one of its terminals is
not connected to the rest of the network now that the current source has been removed.
R2 and R3 are in series, in parallel with R1. All of this is in series with R4. The resulting
resistance is

RTh = R4 +
R1(R2 + R3)
R1 + R2 + R3

(iv) The 1Ω and 2Ω resistors on the right in series combine to form a 3Ω resistor in parallel
with the remaining 2Ω resistor. Their combined resistance is 6

5Ω. This is in series with
the other 1Ω resistor, making the Thévenin resistance equal

RTh =
11
5

Ω

(v) We know from part (iv) that the Thévenin equivalent of the four resistors on the right
side of the circuit are 11

5 Ω. This is in parallel with the third 2Ω resistor, which is in series
with the 1Ω resistor. The total resistance is

RTh =
11
5 ∗ 2

11
5 + 2

+ 1 = 1 +
22
21

Ω

(B) (i) The circuit for RN+1 is shown in the figure below.
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RN is in parallel with the new 2Ω resistor, which is then in series with the 1Ω resistor.
RN+1 is then

RN+1 = 1 +
2RN

2 + RN

(ii) We know that the resistance of the ladder network is not going to change if we add one
more 1Ω-2Ω section, so lim

N→∞
RN+1 = RN . We can write, from part (i) above:

RN = 1 +
2RN

2 + RN

Multiplying both sides by 2 + RN yields a quadratic equation for RN :

R2
N − RN − 2 = 0

Its roots are RN = −1 and RN = 2. RN cannot be negative, so lim
N→∞

RN = 2Ω. Notice

when we another 1Ω-2Ω section was added in part (v) above, the resistance got closer to
2Ω, which is, as we have just shown, it’s limit as N → ∞.



Problem 2.2 Answer:

(i) The Thévenin resistance for this circuit is the result obtained from Problem 2.1 Part A(i),
which is R1(R2+R3)

R1+R2+R3
. The Thévenin voltage is determined by VS and the voltage divider made

by the two resistances R1 and R2+R3. So, VTh = VS
R2+R3

R1+R2+R3
. The Norton equivalent current

can be found using Ohm’s law. IN = VTh
RTh

= VS
R1

. The resulting equivalent circuits are shown
below.

+
-
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R2+R3

R1+R2+R3
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R1R1(R2+R3)
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(ii) This circuit is more complicated than the one above. RTh can be taken from Problem 2.1 Part
A(iii). It is RTh = R4 + R1(R2+R3)

R1+R2+R3
. We can either find VTh or IN next, and use the one to find

the other.

The first important step in solving for VTh is realizing that R5 does not impact it. Whether or
not R5 is present, IS still flows into the R2-R3 node of the circuit. This means we can remove
R5 from the circuit without changing VTh. This new circuit is drawn below, with the resistors
rearranged and a few new variables named.
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It is clear that the current running through R4 is equal to IS . We know, then, that Vx = ISR4.
We also know that VTh = Vx + ixR1. The current ix can be found using the current divider
relationship:

ix =
R3

R1 + R2 + R3
IS

The Thévenin voltage is then

VTh =
R4(R1 + R2 + R3) + R1R3

R1 + R2 + R3
IS



The Norton current can be found by dividing this by RTh, which gives

IN =
VTh

RTh
=

R4(R1 + R2 + R3) + R1R3

R1 + R2 + R3
IS ∗ R1 + R2 + R3

R4(R1 + R2 + R3) + R1(R2 + R3)

IN =
R4(R1 + R2 + R3) + R1R3

R4(R1 + R2 + R3) + R1(R2 + R3)
IS

Problem 2.3 Answer:

(A) We are given 2 v-i data points for the network. These are (4 V, 2 mA), and (6 V, -1 mA).
RTh =

∣∣∣V1−V2
I1−I2

∣∣∣
∣∣∣ 6−4
−1−2

∣∣∣ kΩ = 2
3kΩ. Now that we know RTh, we can find VTh by solving the

following equation:

v = −RThi + VTh

Substituting in one of the v-i points given in the problem, we find that VTh = 51
3V. This is

the voltage across the network’s terminals when no current is flowing in or out of the network,
so it is VTh.

(B) The graph is just determined by the equation from above, rewritten as a function of voltage
rather than of current.

i = − 1
RTh

v + 8 × 10−3

The resulting graph is

v (V)

i (mA)

IN

VTh
1/RTh

Problem 2.4 Answer:

(A) Summing the currents out of the node e, we can write the node equation

e

R2
+

e − V2

R3
+

e − V1

R1
= 0



Solving for e gives

e =
V1
R1

+ V2
R3

1
R1

+ 1
R2

+ 1
R3

=
V1R2R3 + V2R1R2

R1R2 + R1R3 + R2R3

(B) Using superposition, each voltage source only sees a resistive divider network, and we can write
out e directly as

e = V1
R2||R3

R2||R3 + R1
+ V2

R1||R2

R1||R2 + R3
=

V1
R2R3

R2+R3

R2R3
R2+R3

+ R1

+
V2

R1R2
R1+R2

R1R2
R1+R2

+ R3

=
V1
R1

+ V2
R3

1
R1

+ 1
R2

+ 1
R3

(C) Writing KCL at the two nodes, summing currents out of the nodes yields

e1

R1
+

e1 − VS

R2
− IS = 0

e2

R4
+

e2 − VS

R3
+ IS = 0

Solving these equations for e1 and e2 gives

e1 =
(

VS

R2
+ IS

)
R1R2

R1 + R2
e2 =

(
VS

R3
− IS

)
R3R4

R3 + R4

(D) Using superposition, we can write down the expressions for the node voltages e1 and e2 directly.

e1 =
R1

R1 + R2
VS + IS

R1R2

R1 + R2
=

(
VS

R2
+ IS

)
R1R2

R1 + R2

e2 =
R4

R3 + R4
VS − IS

R3R4

R3 + R4
=

(
VS

R3
− IS

)
R3R4

R3 + R4

Problem 2.5 Answer:

(A) Summing the currents out of each node yields the following equations

e1 − e3

R5
+

e1 − e2

R1
− IS = 0

e2 − e1

R1
+

e2 − e3

R3
+

e2

R2
= 0

e3 − e1

R5
+

e3 − e2

R3
+

e3

R4
= 0

Replacing the reciprocal resistances with conductances, and rearranging some terms, we can
write the above equations as

(G1 + G5)e1 + (−G1)e2 + (−G5)e3 = IS

(−G1)e1 + (G1 + G2 + G3)e2 + (−G3)e3 = 0
(−G5)e1 + (−G3)e2 + (G3 + G4 + G5)e3 = 0



which can be re-written in matrix form as

 G1 + G5 −G1 −G5

−G1 G1 + G2 + G3 −G3

−G5 −G3 G3 + G4 + G5


 ·


 e1

e2

e3


 =


 IS

0
0




(B) If G1 = G2 = G3... = G5 = 1mho = 1 1
Ω , then the matrix equation above becomes:


 2 −1 −1

−1 3 −1
−1 −1 3


 ·


 e1

e2

e3


 =


 IS

0
0




We can use Matlab, or a calculator, or our hands to solve this equation for e1, e2 and e3, and
find that


 e1

e2

e3


 =


 IS

IS
2
IS
2




(C) The equivalent resistance of the network can be found by dividing the potential e1 by the
current entering the network, IS . From Part (B) above, we know that e1 = IS , so RTh = 1Ω.

Another way to solve this problem is through a symmetry argument. If all the resistances are
1Ω, then R3 carries no current. To prove this, assume it. The node voltages e2 and e3 will be
equal to each other, because R1

R2
= R5

R4
. If e2 and e3 are equal, then no current flows through

R3, and we’ve verified our assumption. We can remove R3, and realize that the total resistance
seen by the source is 2Ω in parallel with 2Ω, which is equal to 1Ω.

General Case:

In the general case, where we can’t use any symmetry tricks to simplify the problem, we have
to solve the circuit using the node method. Let’s apply a test voltage VT to the resistor network
where the source is, and find an expression for the current into the resistor network IT . We
can then evaluate VT

IT
to find the equivalent resistance of the network. The circuit is drawn

below, rearranged a bit for clarity. The node voltages that we will be solving for are labeled
as well.

+
−
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We know that the current IT is equal to the sum of the currents down through the resistors
R2 and R4. This can be written as IT = G2e1 + G4e2, where G2 and G4 are the conductances



associated with R2 and R4, respectively. To find e1 and e2 we can use the node method to
write

e1 − VT

R1
+

e1 − e2

R3
+

e1

R2
= 0

e2 − VT

R5
+

e2 − e1

R3
+

e2

R4
= 0

which can be rewritten in matrix form:[
G1 + G2 + G3 −G3

−G3 G3 + G4 + G5

] [
e1

e2

]
=

[
BT G1

VT G5

]

We can solve this for the node voltages using simple matrix algebra, and find e1 and e2 in
terms of the conductances and VT . Substitute these back into the equation for RTh above and
we find that:

RTh =
(G1 + G2 + G3)(G3 + G4 + G5) − G2

3

G2[(G3 + G4 + G5)G1 + G3G5] + G4[(G1 + G2 + G3)G5 + G1G3]

For the special case in Part (B), this reduces down to 1Ω.


