Problem 2.1 Answer:

(A) (i) To find the Thévenin resistance, first combine R_2 and R_3. Their resistances add because they are in series with each other. This new resistor is in parallel with R_1, so the total equivalent resistance is

$$R_{Th} = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$

(ii) We’re only asked to find the Thévenin resistance of the network. Any independent sources in the network don’t affect the Thévenin resistance, so we can remove them. A voltage source, when set to 0, becomes a wire, as shown in the figure below.

![Diagram](image1)

The Thévenin resistance of this new circuit is just the series combination of $R_1 || R_2$ and $R_3 || R_4$ which is equal to

$$R_{Th} = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4}$$

(iii) Like in part (ii), we can remove the independent source from this circuit. The resulting circuit is drawn below. It’s been rearranged a little for clarity.

![Diagram](image2)
The resistor R_5 does not impact the Thévenin resistance, because one of its terminals is not connected to the rest of the network now that the current source has been removed. R_2 and R_3 are in series, in parallel with R_1. All of this is in series with R_4. The resulting resistance is

$$R_{Th} = R_4 + \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$

(iv) The 1Ω and 2Ω resistors on the right in series combine to form a 3Ω resistor in parallel with the remaining 2Ω resistor. Their combined resistance is $\frac{6}{5}$Ω. This is in series with the other 1Ω resistor, making the Thévenin resistance equal

$$R_{Th} = \frac{11}{5} \Omega$$

(v) We know from part (iv) that the Thévenin equivalent of the four resistors on the right side of the circuit are $\frac{11}{5}$Ω. This is in parallel with the third 2Ω resistor, which is in series with the 1Ω resistor. The total resistance is

$$R_{Th} = \frac{11}{5} \cdot \frac{2}{1 + \frac{2}{21}}$$

(B) (i) The circuit for R_{N+1} is shown in the figure below.

\[R_N \text{ is in parallel with the new 2Ω resistor, which is then in series with the 1Ω resistor. } R_{N+1} \text{ is then} \]

$$R_{N+1} = 1 + \frac{2R_N}{2 + R_N}$$

(ii) We know that the resistance of the ladder network is not going to change if we add one more 1Ω-2Ω section, so $\lim_{N \to \infty} R_{N+1} = R_N$. We can write, from part (i) above:

$$R_N = 1 + \frac{2R_N}{2 + R_N}$$

Multiplying both sides by $2 + R_N$ yields a quadratic equation for R_N:

$$R_N^2 - R_N - 2 = 0$$

Its roots are $R_N = -1$ and $R_N = 2$. R_N cannot be negative, so $\lim_{N \to \infty} R_N = 2Ω$. Notice when we another 1Ω-2Ω section was added in part (v) above, the resistance got closer to 2Ω, which is, as we have just shown, it’s limit as $N \to \infty$.
Problem 2.2 Answer:

(i) The Thévenin resistance for this circuit is the result obtained from Problem 2.1 Part A(i), which is $R_1(R_2 + R_3) / (R_1 + R_2 + R_3)$. The Thévenin voltage is determined by V_S and the voltage divider made by the two resistances R_1 and $R_2 + R_3$. So, $V_{Th} = V_S (R_2 + R_3) / (R_1 + R_2 + R_3)$. The Norton equivalent current can be found using Ohm’s law. $I_N = \frac{V_{Th}}{R_{Th}} = \frac{V_S}{R_1}$. The resulting equivalent circuits are shown below.

(ii) This circuit is more complicated than the one above. R_{Th} can be taken from Problem 2.1 Part A(iii). It is $R_{Th} = R_4 + R_1(R_2 + R_3) / (R_1 + R_2 + R_3)$. We can either find V_{Th} or I_N next, and use the one to find the other.

The first important step in solving for V_{Th} is realizing that R_5 does not impact it. Whether or not R_5 is present, I_S still flows into the R_2-R_3 node of the circuit. This means we can remove R_5 from the circuit without changing V_{Th}. This new circuit is drawn below, with the resistors rearranged and a few new variables named.

It is clear that the current running through R_4 is equal to I_S. We know, then, that $V_x = I_S R_1$. We also know that $V_{Th} = V_x + i_x R_1$. The current i_x can be found using the current divider relationship:

$$i_x = \frac{R_3}{R_1 + R_2 + R_3} I_S$$

The Thévenin voltage is then

$$V_{Th} = \frac{R_4(R_1 + R_2 + R_3) + R_1 R_3}{R_1 + R_2 + R_3} I_S$$
The Norton current can be found by dividing this by R_{Th}, which gives

\[
I_N = \frac{V_{\text{Th}}}{R_{\text{Th}}} = \frac{R_4(R_1 + R_2 + R_3) + R_1R_3}{R_4(R_1 + R_2 + R_3) + R_1(R_2 + R_3)}I_S + \frac{R_1 + R_2 + R_3}{R_4(R_1 + R_2 + R_3) + R_1(R_2 + R_3)}I_S
\]

Problem 2.3 Answer:

(A) We are given 2 v-i data points for the network. These are (4 V, 2 mA), and (6 V, -1 mA).

\[
R_{\text{Th}} = \left| \frac{V_1 - V_2}{I_1 - I_2} \right| = \left| \frac{6 - 4}{-1 - 2} \right| k\Omega = \frac{2}{3} k\Omega.
\]

Now that we know R_{Th}, we can find V_{Th} by solving the following equation:

\[
v = -R_{\text{Th}}i + V_{\text{Th}}
\]

Substituting in one of the v-i points given in the problem, we find that $V_{\text{Th}} = 5\frac{1}{3} V$. This is the voltage across the network’s terminals when no current is flowing in or out of the network, so it is V_{Th}.

(B) The graph is just determined by the equation from above, rewritten as a function of voltage rather than of current.

\[
i = -\frac{1}{R_{\text{Th}}}v + 8 \times 10^{-3}
\]

The resulting graph is

Problem 2.4 Answer:

(A) Summing the currents out of the node e, we can write the node equation

\[
\frac{e}{R_2} + \frac{e - V_2}{R_3} + \frac{e - V_1}{R_1} = 0
\]
Solving for e gives

$$e = \frac{V_1}{R_1} + \frac{V_2}{R_2} = \frac{V_1 R_2 R_3 + V_2 R_1 R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

(B) Using superposition, each voltage source only sees a resistive divider network, and we can write out e directly as

$$e = V_1 \frac{R_2}{R_2 || R_3 + R_1} + V_2 \frac{R_1}{R_1 || R_2 + R_3} = \frac{V_1 R_2 R_3 + V_2 R_1 R_2}{R_1 R_2 + R_1 R_3 + R_2 R_3} = \frac{V_1}{R_1} + \frac{V_2}{R_3}$$

(C) Writing KCL at the two nodes, summing currents out of the nodes yields

$$\frac{e_1}{R_1} + \frac{e_1 - V_S}{R_2} - I_S = 0$$
$$\frac{e_2}{R_4} + \frac{e_2 - V_S}{R_3} + I_S = 0$$

Solving these equations for e_1 and e_2 gives

$$e_1 = \left(\frac{V_S}{R_2} + I_S\right) \frac{R_1 R_2}{R_1 + R_2} \quad e_2 = \left(\frac{V_S}{R_3} - I_S\right) \frac{R_3 R_4}{R_3 + R_4}$$

(D) Using superposition, we can write down the expressions for the node voltages e_1 and e_2 directly.

$$e_1 = \frac{R_1}{R_1 + R_2} V_S + \frac{R_1 R_2}{R_1 + R_2} = \left(\frac{V_S}{R_2} + I_S\right) \frac{R_1 R_2}{R_1 + R_2}$$
$$e_2 = \frac{R_4}{R_3 + R_4} V_S - \frac{R_3 R_4}{R_3 + R_4} = \left(\frac{V_S}{R_3} - I_S\right) \frac{R_3 R_4}{R_3 + R_4}$$

Problem 2.5 Answer:

(A) Summing the currents out of each node yields the following equations

$$\frac{e_1 - e_3}{R_5} + \frac{e_1 - e_2}{R_1} - I_S = 0$$
$$\frac{e_2 - e_1}{R_1} + \frac{e_2 - e_3}{R_3} + \frac{e_2}{R_2} = 0$$
$$\frac{e_3 - e_1}{R_5} + \frac{e_3 - e_2}{R_3} + \frac{e_3}{R_4} = 0$$

Replacing the reciprocal resistances with conductances, and rearranging some terms, we can write the above equations as

$$(G_1 + G_5)e_1 + (-G_1)e_2 + (-G_5)e_3 = I_S$$
$$(-G_1)e_1 + (G_1 + G_2 + G_3)e_2 + (-G_3)e_3 = 0$$
$$(-G_5)e_1 + (-G_3)e_2 + (G_3 + G_4 + G_5)e_3 = 0$$
which can be re-written in matrix form as

\[
\begin{bmatrix}
G_1 + G_5 & -G_1 & -G_5 \\
-G_1 & G_1 + G_2 + G_3 & -G_3 \\
-G_5 & -G_3 & G_3 + G_4 + G_5
\end{bmatrix}
\cdot
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix}
=
\begin{bmatrix}
I_S \\
0 \\
0
\end{bmatrix}
\]

(B) If \(G_1 = G_2 = G_3 = \cdots = G_5 = 1 \text{mho} = 1 \frac{1}{\Omega} \), then the matrix equation above becomes:

\[
\begin{bmatrix}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{bmatrix}
\cdot
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix}
=
\begin{bmatrix}
I_S \\
0 \\
0
\end{bmatrix}
\]

We can use Matlab, or a calculator, or our hands to solve this equation for \(e_1, e_2 \) and \(e_3 \), and find that

\[
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix}
=
\begin{bmatrix}
\frac{I_S}{2} \\
\frac{I_S}{2} \\
\frac{I_S}{2}
\end{bmatrix}
\]

(C) The equivalent resistance of the network can be found by dividing the potential \(e_1 \) by the current entering the network, \(I_S \). From Part (B) above, we know that \(e_1 = I_S \), so \(R_{Th} = 1 \Omega \).

Another way to solve this problem is through a symmetry argument. If all the resistances are \(1 \Omega \), then \(R_3 \) carries no current. To prove this, assume it. The node voltages \(e_2 \) and \(e_3 \) will be equal to each other, because \(\frac{R_1}{R_2} = \frac{R_5}{R_4} \). If \(e_2 \) and \(e_3 \) are equal, then no current flows through \(R_3 \), and we’ve verified our assumption. We can remove \(R_3 \), and realize that the total resistance seen by the source is \(2 \Omega \) in parallel with \(2 \Omega \), which is equal to \(1 \Omega \).

General Case:

In the general case, where we can’t use any symmetry tricks to simplify the problem, we have to solve the circuit using the node method. Let’s apply a test voltage \(V_T \) to the resistor network where the source is, and find an expression for the current into the resistor network \(I_T \). We can then evaluate \(\frac{V_T}{I_T} \) to find the equivalent resistance of the network. The circuit is drawn below, rearranged a bit for clarity. The node voltages that we will be solving for are labeled as well.

![Resistor Network Diagram](image)

We know that the current \(I_T \) is equal to the sum of the currents down through the resistors \(R_2 \) and \(R_4 \). This can be written as \(I_T = G_2 e_1 + G_4 e_2 \), where \(G_2 \) and \(G_4 \) are the conductances.
associated with R_2 and R_4, respectively. To find e_1 and e_2 we can use the node method to write

\[
\frac{e_1 - V_T}{R_1} + \frac{e_1 - e_2}{R_3} + \frac{e_1}{R_2} = 0
\]

\[
\frac{e_2 - V_T}{R_5} + \frac{e_2 - e_1}{R_3} + \frac{e_2}{R_4} = 0
\]

which can be rewritten in matrix form:

\[
\begin{bmatrix}
G_1 + G_2 + G_3 & -G_3 \\
-G_3 & G_3 + G_4 + G_5
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e_2
\end{bmatrix} =
\begin{bmatrix}
B_T G_1 \\
V_T G_5
\end{bmatrix}
\]

We can solve this for the node voltages using simple matrix algebra, and find e_1 and e_2 in terms of the conductances and V_T. Substitute these back into the equation for R_{Th} above and we find that:

\[
R_{Th} = \frac{(G_1 + G_2 + G_3)(G_3 + G_4 + G_5) - G_3^2}{G_2[(G_3 + G_4 + G_5)G_1 + G_3G_5] + G_4[(G_1 + G_2 + G_3)G_5 + G_1G_3]}
\]

For the special case in Part (B), this reduces down to 1Ω.