Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Homework \#2 Solutions

Problem 2.1 Answer:

(A) (i) To find the Thévenin resistance, first combine R_{2} and R_{3}. Their resistances add because they are in series with each other. This new resistor is in parallel with R_{1}, so the total equivalent resistance is

$$
R_{\mathrm{Th}}=\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+R_{2}+R_{3}}
$$

(ii) We're only asked to find the Thévenin resistance of the network. Any independent sources in the network don't affect the Thévenin resistance, so we can remove them. A voltage source, when set to 0 , becomes a wire, as shown in the figure below.

The Thévenin resistance of this new circuit is just the series combination of $R_{1} \| R_{2}$ and $R_{3} \| R_{4}$ which is equal to

$$
R_{\mathrm{Th}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+\frac{R_{3} R_{4}}{R_{3}+R_{4}}
$$

(iii) Like in part (ii), we can remove the independent source from this circuit. The resulting circuit is drawn below. It's been rearranged a little for clarity.

The resistor R_{5} does not impact the Thévenin resistance, because one of its terminals is not connected to the rest of the network now that the current source has been removed. R_{2} and R_{3} are in series, in parallel with R_{1}. All of this is in series with R_{4}. The resulting resistance is

$$
R_{\mathrm{Th}}=R_{4}+\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+R_{2}+R_{3}}
$$

(iv) The 1Ω and 2Ω resistors on the right in series combine to form a 3Ω resistor in parallel with the remaining 2Ω resistor. Their combined resistance is $\frac{6}{5} \Omega$. This is in series with the other 1Ω resistor, making the Thévenin resistance equal

$$
R_{\mathrm{Th}}=\frac{11}{5} \Omega
$$

(v) We know from part (iv) that the Thévenin equivalent of the four resistors on the right side of the circuit are $\frac{11}{5} \Omega$. This is in parallel with the third 2Ω resistor, which is in series with the 1Ω resistor. The total resistance is

$$
R_{\mathrm{Th}}=\frac{\frac{11}{5} * 2}{\frac{11}{5}+2}+1=1+\frac{22}{21} \Omega
$$

(B) (i) The circuit for R_{N+1} is shown in the figure below.

R_{N} is in parallel with the new 2Ω resistor, which is then in series with the 1Ω resistor. R_{N+1} is then

$$
R_{N+1}=1+\frac{2 R_{N}}{2+R_{N}}
$$

(ii) We know that the resistance of the ladder network is not going to change if we add one more $1 \Omega-2 \Omega$ section, so $\lim _{N \rightarrow \infty} R_{N+1}=R_{N}$. We can write, from part (i) above:

$$
R_{N}=1+\frac{2 R_{N}}{2+R_{N}}
$$

Multiplying both sides by $2+R_{N}$ yields a quadratic equation for R_{N} :

$$
R_{N}^{2}-R_{N}-2=0
$$

Its roots are $R_{\mathrm{N}}=-1$ and $R_{\mathrm{N}}=2 . R_{N}$ cannot be negative, so $\lim _{N \rightarrow \infty} R_{N}=2 \Omega$. Notice when we another $1 \Omega-2 \Omega$ section was added in part (v) above, the resistance got closer to 2Ω, which is, as we have just shown, it's limit as $N \rightarrow \infty$.

Problem 2.2 Answer:

(i) The Thévenin resistance for this circuit is the result obtained from Problem 2.1 Part $\mathrm{A}(i)$, which is $\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+R_{2}+R_{3}}$. The Thévenin voltage is determined by V_{S} and the voltage divider made by the two resistances R_{1} and $R_{2}+R_{3}$. So, $V_{T h}=V_{S} \frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{3}}$. The Norton equivalent current can be found using Ohm's law. $I_{N}=\frac{V_{T h}}{R_{\mathrm{Th}}}=\frac{V_{S}}{R_{1}}$. The resulting equivalent circuits are shown below.

(ii) This circuit is more complicated than the one above. $R_{\text {Th }}$ can be taken from Problem 2.1 Part $\mathrm{A}(i i i)$. It is $R_{\mathrm{Th}}=R_{4}+\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{1}+R_{2}+R_{3}}$. We can either find $V_{T h}$ or I_{N} next, and use the one to find the other.

The first important step in solving for $V_{T h}$ is realizing that R_{5} does not impact it. Whether or not R_{5} is present, I_{S} still flows into the $R_{2}-R_{3}$ node of the circuit. This means we can remove R_{5} from the circuit without changing $V_{T h}$. This new circuit is drawn below, with the resistors rearranged and a few new variables named.

It is clear that the current running through R_{4} is equal to I_{S}. We know, then, that $V_{x}=I_{S} R_{4}$. We also know that $V_{T h}=V_{x}+i_{x} R_{1}$. The current i_{x} can be found using the current divider relationship:

$$
i_{x}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}} I_{S}
$$

The Thévenin voltage is then

$$
V_{T h}=\frac{R_{4}\left(R_{1}+R_{2}+R_{3}\right)+R_{1} R_{3}}{R_{1}+R_{2}+R_{3}} I_{S}
$$

The Norton current can be found by dividing this by R_{Th}, which gives

$$
\begin{aligned}
I_{N} & =\frac{V_{T h}}{R_{\mathrm{Th}}}=\frac{R_{4}\left(R_{1}+R_{2}+R_{3}\right)+R_{1} R_{3}}{R_{1}+R_{2}+R_{3}} I_{S} * \frac{R_{1}+R_{2}+R_{3}}{R_{4}\left(R_{1}+R_{2}+R_{3}\right)+R_{1}\left(R_{2}+R_{3}\right)} \\
I_{N} & =\frac{R_{4}\left(R_{1}+R_{2}+R_{3}\right)+R_{1} R_{3}}{R_{4}\left(R_{1}+R_{2}+R_{3}\right)+R_{1}\left(R_{2}+R_{3}\right)} I_{S}
\end{aligned}
$$

Problem 2.3 Answer:

(A) We are given $2 v-i$ data points for the network. These are ($4 \mathrm{~V}, 2 \mathrm{~mA}$), and ($6 \mathrm{~V},-1 \mathrm{~mA}$). $R_{\mathrm{Th}}=\left|\frac{V_{1}-V_{2}}{I_{1}-I_{2}}\right|\left|\frac{6-4}{-1-2}\right| k \Omega=\frac{2}{3} k \Omega$. Now that we know R_{Th}, we can find $V_{T h}$ by solving the following equation:

$$
v=-R_{\mathrm{Th}} i+V_{T h}
$$

Substituting in one of the $v-i$ points given in the problem, we find that $V_{T h}=5 \frac{1}{3} \mathrm{~V}$. This is the voltage across the network's terminals when no current is flowing in or out of the network, so it is $V_{T h}$.
(B) The graph is just determined by the equation from above, rewritten as a function of voltage rather than of current.

$$
i=-\frac{1}{R_{\mathrm{Th}}} v+8 \times 10^{-3}
$$

The resulting graph is

Problem 2.4 Answer:

(A) Summing the currents out of the node e, we can write the node equation

$$
\frac{e}{R_{2}}+\frac{e-V_{2}}{R_{3}}+\frac{e-V_{1}}{R_{1}}=0
$$

Solving for e gives

$$
e=\frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}=\frac{V_{1} R_{2} R_{3}+V_{2} R_{1} R_{2}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}
$$

(B) Using superposition, each voltage source only sees a resistive divider network, and we can write out e directly as

$$
e=V_{1} \frac{R_{2} \| R_{3}}{R_{2}| | R_{3}+R_{1}}+V_{2} \frac{R_{1} \| R_{2}}{R_{1}| | R_{2}+R_{3}}=\frac{V_{1} \frac{R_{2} R_{3}}{R_{2}+R_{3}}}{\frac{R_{2} R_{3}}{R_{2}+R_{3}}+R_{1}}+\frac{V_{2} \frac{R_{1} R_{2}}{R_{1}+R_{2}}}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}}=\frac{\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}
$$

(C) Writing KCL at the two nodes, summing currents out of the nodes yields

$$
\begin{aligned}
& \frac{e_{1}}{R_{1}}+\frac{e_{1}-V_{S}}{R_{2}}-I_{S}=0 \\
& \frac{e_{2}}{R_{4}}+\frac{e_{2}-V_{S}}{R_{3}}+I_{S}=0
\end{aligned}
$$

Solving these equations for e_{1} and e_{2} gives

$$
e_{1}=\left(\frac{V_{S}}{R_{2}}+I_{S}\right) \frac{R_{1} R_{2}}{R_{1}+R_{2}} \quad e_{2}=\left(\frac{V_{S}}{R_{3}}-I_{S}\right) \frac{R_{3} R_{4}}{R_{3}+R_{4}}
$$

(D) Using superposition, we can write down the expressions for the node voltages e_{1} and e_{2} directly.

$$
\begin{aligned}
& e_{1}=\frac{R_{1}}{R_{1}+R_{2}} V_{S}+I_{S} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=\left(\frac{V_{S}}{R_{2}}+I_{S}\right) \frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
& e_{2}=\frac{R_{4}}{R_{3}+R_{4}} V_{S}-I_{S} \frac{R_{3} R_{4}}{R_{3}+R_{4}}=\left(\frac{V_{S}}{R_{3}}-I_{S}\right) \frac{R_{3} R_{4}}{R_{3}+R_{4}}
\end{aligned}
$$

Problem 2.5 Answer:

(A) Summing the currents out of each node yields the following equations

$$
\begin{aligned}
& \frac{e_{1}-e_{3}}{R_{5}}+\frac{e_{1}-e_{2}}{R_{1}}-I_{S}=0 \\
& \frac{e_{2}-e_{1}}{R_{1}}+\frac{e_{2}-e_{3}}{R_{3}}+\frac{e_{2}}{R_{2}}=0 \\
& \frac{e_{3}-e_{1}}{R_{5}}+\frac{e_{3}-e_{2}}{R_{3}}+\frac{e_{3}}{R_{4}}=0
\end{aligned}
$$

Replacing the reciprocal resistances with conductances, and rearranging some terms, we can write the above equations as

$$
\begin{aligned}
\left(G_{1}+G_{5}\right) e_{1}+\left(-G_{1}\right) e_{2}+\left(-G_{5}\right) e_{3} & =I_{S} \\
\left(-G_{1}\right) e_{1}+\left(G_{1}+G_{2}+G_{3}\right) e_{2}+\left(-G_{3}\right) e_{3} & =0 \\
\left(-G_{5}\right) e_{1}+\left(-G_{3}\right) e_{2}+\left(G_{3}+G_{4}+G_{5}\right) e_{3} & =0
\end{aligned}
$$

which can be re-written in matrix form as

$$
\left[\begin{array}{ccc}
G_{1}+G_{5} & -G_{1} & -G_{5} \\
-G_{1} & G_{1}+G_{2}+G_{3} & -G_{3} \\
-G_{5} & -G_{3} & G_{3}+G_{4}+G_{5}
\end{array}\right] \cdot\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{S} \\
0 \\
0
\end{array}\right]
$$

(B) If $G_{1}=G_{2}=G_{3} \ldots=G_{5}=1 m h o=1 \frac{1}{\Omega}$, then the matrix equation above becomes:

$$
\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{S} \\
0 \\
0
\end{array}\right]
$$

We can use Matlab, or a calculator, or our hands to solve this equation for e_{1}, e_{2} and e_{3}, and find that

$$
\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right]=\left[\begin{array}{c}
I_{S} \\
\frac{I_{S}}{2} \\
\frac{I_{S}}{2}
\end{array}\right]
$$

(C) The equivalent resistance of the network can be found by dividing the potential e_{1} by the current entering the network, I_{S}. From Part (B) above, we know that $e_{1}=I_{S}$, so $R_{\mathrm{Th}}=1 \Omega$.

Another way to solve this problem is through a symmetry argument. If all the resistances are 1Ω, then R_{3} carries no current. To prove this, assume it. The node voltages e_{2} and e_{3} will be equal to each other, because $\frac{R_{1}}{R_{2}}=\frac{R_{5}}{R_{4}}$. If e_{2} and e_{3} are equal, then no current flows through R_{3}, and we've verified our assumption. We can remove R_{3}, and realize that the total resistance seen by the source is 2Ω in parallel with 2Ω, which is equal to 1Ω.

General Case:

In the general case, where we can't use any symmetry tricks to simplify the problem, we have to solve the circuit using the node method. Let's apply a test voltage V_{T} to the resistor network where the source is, and find an expression for the current into the resistor network I_{T}. We can then evaluate $\frac{V_{T}}{I_{T}}$ to find the equivalent resistance of the network. The circuit is drawn below, rearranged a bit for clarity. The node voltages that we will be solving for are labeled as well.

We know that the current I_{T} is equal to the sum of the currents down through the resistors R_{2} and R_{4}. This can be written as $I_{T}=G_{2} e_{1}+G_{4} e_{2}$, where G_{2} and G_{4} are the conductances
associated with R_{2} and R_{4}, respectively. To find e_{1} and e_{2} we can use the node method to write

$$
\begin{aligned}
& \frac{e_{1}-V_{T}}{R_{1}}+\frac{e_{1}-e_{2}}{R_{3}}+\frac{e_{1}}{R_{2}}=0 \\
& \frac{e_{2}-V_{T}}{R_{5}}+\frac{e_{2}-e_{1}}{R_{3}}+\frac{e_{2}}{R_{4}}=0
\end{aligned}
$$

which can be rewritten in matrix form:

$$
\left[\begin{array}{cc}
G_{1}+G_{2}+G_{3} & -G_{3} \\
-G_{3} & G_{3}+G_{4}+G_{5}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]=\left[\begin{array}{c}
B_{T} G_{1} \\
V_{T} G_{5}
\end{array}\right]
$$

We can solve this for the node voltages using simple matrix algebra, and find e_{1} and e_{2} in terms of the conductances and V_{T}. Substitute these back into the equation for R_{Th} above and we find that:

$$
R_{\mathrm{Th}}=\frac{\left(G_{1}+G_{2}+G_{3}\right)\left(G_{3}+G_{4}+G_{5}\right)-G_{3}^{2}}{G_{2}\left[\left(G_{3}+G_{4}+G_{5}\right) G_{1}+G_{3} G_{5}\right]+G_{4}\left[\left(G_{1}+G_{2}+G_{3}\right) G_{5}+G_{1} G_{3}\right]}
$$

For the special case in Part (B), this reduces down to 1Ω.

