MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.002 – Electronic Circuits Fall 2002

Corrections to Problem Set 3

Problem 3.3: (C) Let $i_S = I_S + i_s$ and $v_O = V_O + v_o$, where $I_S = 5mA$, V_O is the operating voltage found in part (B), and i_s and v_o are the small-signal components of the source and output voltage respectively. Find the small-signal ratio v_o/i_s for the operating point found in part (B) using a Taylor series expansion.

Problem 3.4: (C) Let $v_S = V_S + v_s$ and $v_O = V_O + v_o$ where $V_S = 1.5V$, V_O is an operating point and v_s and v_o are the small-signal components of v_S and v_O . For each of the operating points found in part (A), find the small-signal gain v_O/v_s using graphical analysis.

The symbol and i-v characteristic of a tunnel diode are shown in Figure 1.

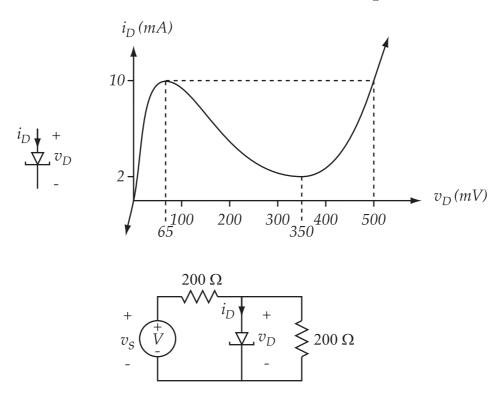


Figure 1: Device and network for Problem 3.4