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Problem 4.1 Answer:

(A) The answers to these problems make use of DeMorgan’s theorem. Information on this can
be found in the course notes on pages ???-???. DeMorgan’s theorem states that the following
expressions are equivalent:

A+B = A B

AB = A+B

Verify this for yourself by writing out the truth tables for the above expressions.

(i) Using DeMorgan’s theorem to turn the OR operation into a NAND, this expression be-
comes

(AB)(AB)

This is implemented in only NOT and NAND gates as

A

B
A

B
AB+AB

(ii) Using DeMorgan’s theorem to turn the AND operations into NORs, this expression be-
comes

A+B +A+B

This is implemented in only NOT and NOR gates as

A

B

A

AB+ABB

(B) We know that NOT, NAND, and NOR gates implemented with n-channel MOSFETs and
pull-up resistors look like the following.



NOT NAND NOR

A

A
B

AB

A+B

A A B

We can use these building blocks and connect them according to the diagrams in Part (A) to
find the following implementations.

(i) The circuit implemented with NAND and NOT gates is

A
B

A

B

AB+AB

A

B

(ii) The circuit implemented with NOR and NOT gates is

A

A

B

AB+AB

B

B

A



Problem 4.2 Answer:

Again, we can use DeMorgan’s Theorem to simplify these expressions so they can be implemented
with fewer transistors and pull-up resistors.

(A) A + B + C can be transformed into ABC by changing the ORs to NANDs. This can be
implemented with one inverter and one three-input NAND gate, as shown below.

A+B+C

A

B

C

(B) Transform the AND in (AB)(C) into a NOR to get AB + C. This can be implemented using
one two-input NAND gate, and one 2-input NOR gate.

A

B

C

ABC

(C) This expression is a little more challenging to synthesize with no more than four MOSFETs
and two resistors. Notice that the output should be high when either AB or C is high. We
can synthesize a circuit which has the opposite behavior, that is the output is low when AB

or C is high. That circuit is

AB+C

A

C

B



Add an inverter to it’s output, and we get the desired logic function. This circuit is

AB+C

A

C

B

AB+C

Problem 4.3 Answer:

(A) Neither of the input MOSFETs can turn on (and bring the output low) unless VA,B > VIL.
This means that VT < VIL. We also know that the MOSFETs must turn on for VA,B > VIH ,
which implies that VT < VIH . The acceptable range of values for VT is then

1.5V < VT < 4V

(B) The Ron resistances of the three MOSFETs determine the output voltage VC . The two restric-
tions on VC are

(i) VC > VOH when the output should be high

(ii) VC < VOL when the output should be low

Restriction (i) is satisfied for any Ron of the three MOSFETs when VA and VB are low. VC
will be equal to VS independent of the Ron of the pull-up MOSFET because no current flows
through it. Restriction (ii) on VC will determine the Ron of the devices. The highest value of
VC when the output should be low is produced when only one of the two input MOSFETs is
on. We can write VC in terms of the Ron values for the MOSFETs (with only one input high)
as:

VC = VS
1kΩ Li

Wi

1kΩ Li

Wi
+ 1kΩ

Lp

Wp

= VS
RI

RI +RP

< VOL

where LI , WI and RI are the length, width and resistance of one of the input MOSFETs,
respectively and LP , WP and RP are the length, width and resistance of the pullup MOSFET.

Both input MOSFETs must be the same size. If B were larger than A, for example, there
exists a smaller MOSFET (namely A) that would still satisfy the static discipline, so B could
be made smaller. Both MOSFETs will be the “optimum” value.

Using the VOL restriction above, we can rearrange VS
RI

RI+RP
< VOL and substitute in values

for VS and VOL to find

9RI < RP



If we choose RP greater than 9RI , though, there is a resistor of smaller value (and therefore
smaller area) that would also satisfy the restriction. Minimizing the area of the transistors
requires that RP = 9RI .

Look again at the VOL restriction. Ideally, we want RP to be large, and RI to be small. This
implies that WP = LI = .5µm. If this were not the case, we could achieve the same resistances
for RP or RO with proportionally smaller L’s and W ’s, which means the total area would be
smaller.

Armed with this knowledge, we can minimize the area A = LPWP + 2LIWI .

Substitute in WP = LI = .5µm into the area equation and the RP = 9RI equation to get the
following (note that all dimensions are in µm, units have been omitted):

A = .5LP +WI

LP

.5
= 9

.5

WI

Solve the second equation for LP and substitute it into the area equation to get

A =
1.125

WI

+WI

Take the derivative of this and set it equal to zero to find the WI that minimizes the area of
the gate.

0 =
d

dWI

(

1.125

WI

+WI

)

1 =
1.125

W 2
I

3

2
√
2

= WI ≈ 1.0607µm

We can use this to find

LP =
9

4WI

=
3
√
2
≈ 2.1213µm

The minimal total gate area is then

.5
3
√
2
+ 2 ∗ .5

3

2
√
2
=

3
√
2
= 2.1213(µm)2

(C) Recall that the power dissipated by resistive devices is given by V 2

R
. The resistance between

VS and the ground node for each of the four input states is summarized in the table below.
Note that the RP is 3

√
2kΩ ≈ 4.2426kΩ and the resistance of each of the pull-down resistors

RI is
√

2
3 kΩ ≈ .4714kΩ from Part (B).

A B R

0 0 ∞

0 1 (3
√
2 +

√

2
3 )kΩ

1 0 (3
√
2 +

√

2
3 )kΩ

1 1 (3
√
2 +

√

2
6 )kΩ



The total average power dissipated by the gate is the average of the power dissipated in each
state (because the gate is operated in each state for equal time). This is

1

4

(

25

∞Ω
W+

25

(3
√
2 +

√

2
3 )kΩ

W+
25

(3
√
2 +

√

2
3 )kΩ

W+
25

(3
√
2 +

√

2
6 )kΩ

W

)

≈ 4.0473mW

Problem 4.4 Answer:

(A) The node between RI and the dependent current source is at the same potential as the ground
node (they are connected!). This allows us to write out an equation for iB directly as

iB =
vI

RI

With this information, we can express vO as the sum of the voltage VS and the voltage drop
across the resistor RL. This gives

vO = VS −RLβiB

Substituting in the equation for iB above yields an expression for vO in terms of vI .

vO = VS −RLβ
vI

RI

(B) The equation found for vO in Part (A) has intercepts at vO = VS and vI = VS
RI

βRL
. For iB > 0,

vI > 0. The other restriction on valid operating ranges (given in the problem statement) is that
vO > 0. These two restrictions limit the range of validity of this model to the first quadrant,
graphed below.

vI

vO

VS

0
VSRI
βRL

RI

 βRL

The small signal gain dvo

dvi
is found by differentiating the expression for vO above.

dvo

dvi
= −

RLβ

RI

Problem 4.5 Answer:



(A) To compute the gain of the circuit Av, we need to find an expression for vo in terms of vi, and
then divide both sides by vi to find Av =

vo

vi
.

The current flowing into the resistor R1 (from the vi side) is equal to the current flowing out
of R2 into the dependent voltage source. This allows us to write

vi − v1

R1
=
v1 − vo

R2

We also know that vo is just

vo = −Av1

Substitute the second equation into the first for v1 and solve for vo

vi
.

vi − v1

R1
=

v1 − vo

R2
= v1

1 +A

R2

vi

R1
= v1

(

1 +A

R2
+

1

R1

)

vi

R1
= −

vo

A

(

1 +A

R2
+

1

R1

)

vo

vi
= −

AR2

R1(1 +A) +R2

(B) Let e1 denote the potential of the node in the top right-hand side of the circuit (where R2

meets R3). If i flows into this node, and αi flows out through the dependent current source,
we know that (1− α)i must flow out of the node through R3. The node voltage e1 is given by

e1 = R3(1− α)i

The current i can be expressed as

i =
vi − e1

R2
=
vi −R3(1− α)i

R2

i =
vi

R2 +R3(1− α)

Combine this with KCL at the input node:

ii =
vi

R1
+ i

to find that

ii = vi

(

1

R1
+

1

R2 +R3(1− α)

)

Solve this equation for vi

ii
to find RTh. This yields

RTh =
1

1
R1

+ 1
R2+R3(1−α)

=
R1(R2 +R3(1− α))

R1 +R2 +R3(1− α)



(C) First find RTh. All independent sources are set to zero, which means that v1 is going to be
equal to −va where va is the voltage at the terminal a. For clarity, redraw the circuit as shown
below, and define ia as the test current into the terminal a.

+
−

R1

RL

-gmva

+

-

va

ia a

The Thévenin resistance is RTh = va

ia
. Write KCL at the node a to obtain

va

R1
+
va + gmva

RL

= ia

Solve for va

ia
to find

RTh =
1

1
R1

+ 1+gm

RL

=
R1RL

R1(1 + gm) +RL

Next we need to find the Thévenin voltage at terminal a. The resistors R1 and RL form a
voltage divider with the dependent voltage source. We can write

va = gmv1
R1

R1 +RL

Writing KVL around the simple loop on the left side of the circuit gives

v1 = vi − va

Substitute this equation into the first for v1 to find

va =
gmR1

R1 +RL

(vi − va)

Solve this to find an expression for va to get

VTh = va = vi
gmR1

gmRL +R1 +RL


