# Massachusetts Institute of Technology <br> Department of Electrical Engineering and Computer Science 

### 6.002 - Electronic Circuits <br> Fall 2002

Homework \#4 Solutions

## Problem 4.1 Answer:

(A) The answers to these problems make use of DeMorgan's theorem. Information on this can be found in the course notes on pages ???-???. DeMorgan's theorem states that the following expressions are equivalent:

$$
\begin{aligned}
A+B & =\overline{\bar{A}} \bar{B} \\
A B & =\overline{\bar{A}+\bar{B}}
\end{aligned}
$$

Verify this for yourself by writing out the truth tables for the above expressions.
(i) Using DeMorgan's theorem to turn the OR operation into a NAND, this expression becomes

$$
\overline{(\overline{A \bar{B}})(\overline{\overline{A B}})}
$$

This is implemented in only NOT and NAND gates as

(ii) Using DeMorgan's theorem to turn the AND operations into NORs, this expression becomes

$$
\overline{\bar{A}+B}+\overline{A+\bar{B}}
$$

This is implemented in only NOT and NOR gates as

(B) We know that NOT, NAND, and NOR gates implemented with n-channel MOSFETs and pull-up resistors look like the following.


We can use these building blocks and connect them according to the diagrams in Part (A) to find the following implementations.
(i) The circuit implemented with NAND and NOT gates is

(ii) The circuit implemented with NOR and NOT gates is


## Problem 4.2 Answer:

Again, we can use DeMorgan's Theorem to simplify these expressions so they can be implemented with fewer transistors and pull-up resistors.
(A) $A+\bar{B}+\bar{C}$ can be transformed into $\overline{\bar{A} B C}$ by changing the ORs to NANDs. This can be implemented with one inverter and one three-input NAND gate, as shown below.

(B) Transform the AND in $(A B)(\bar{C})$ into a NOR to get $\overline{\overline{A B}+C}$. This can be implemented using one two-input NAND gate, and one 2-input NOR gate.

(C) This expression is a little more challenging to synthesize with no more than four MOSFETs and two resistors. Notice that the output should be high when either $A B$ or $C$ is high. We can synthesize a circuit which has the opposite behavior, that is the output is low when $A B$ or $C$ is high. That circuit is


Add an inverter to it's output, and we get the desired logic function. This circuit is


## Problem 4.3 Answer:

(A) Neither of the input MOSFETs can turn on (and bring the output low) unless $V_{A, B}>V_{I L}$. This means that $V_{T}<V_{I L}$. We also know that the MOSFETs must turn on for $V_{A, B}>V_{I H}$, which implies that $V_{T}<V_{I H}$. The acceptable range of values for $V_{T}$ is then

$$
1.5 \mathrm{~V}<V_{T}<4 \mathrm{~V}
$$

(B) The $R_{o n}$ resistances of the three MOSFETs determine the output voltage $V_{C}$. The two restrictions on $V_{C}$ are
(i) $V_{C}>V_{O H}$ when the output should be high
(ii) $V_{C}<V_{O L}$ when the output should be low

Restriction (i) is satisfied for any $R_{o n}$ of the three MOSFETs when $V_{A}$ and $V_{B}$ are low. $V_{C}$ will be equal to $V_{S}$ independent of the $R_{o n}$ of the pull-up MOSFET because no current flows through it. Restriction (ii) on $V_{C}$ will determine the $R_{o n}$ of the devices. The highest value of $V_{C}$ when the output should be low is produced when only one of the two input MOSFETs is on. We can write $V_{C}$ in terms of the $R_{o n}$ values for the MOSFETs (with only one input high) as:

$$
V_{C}=V_{S} \frac{1 \mathrm{k} \Omega \frac{L_{i}}{W_{i}}}{1 \mathrm{k} \Omega \frac{L_{i}}{W_{i}}+1 \mathrm{k} \Omega \frac{L_{p}}{W_{p}}}=V_{S} \frac{R_{I}}{R_{I}+R_{P}}<V_{O L}
$$

where $L_{I}, W_{I}$ and $R_{I}$ are the length, width and resistance of one of the input MOSFETs, respectively and $L_{P}, W_{P}$ and $R_{P}$ are the length, width and resistance of the pullup MOSFET.

Both input MOSFETs must be the same size. If B were larger than A, for example, there exists a smaller MOSFET (namely A) that would still satisfy the static discipline, so B could be made smaller. Both MOSFETs will be the "optimum" value.

Using the $V_{O L}$ restriction above, we can rearrange $V_{S} \frac{R_{I}}{R_{I}+R_{P}}<V_{O L}$ and substitute in values for $V_{S}$ and $V_{O L}$ to find

$$
9 R_{I}<R_{P}
$$

If we choose $R_{P}$ greater than $9 R_{I}$, though, there is a resistor of smaller value (and therefore smaller area) that would also satisfy the restriction. Minimizing the area of the transistors requires that $R_{P}=9 R_{I}$.

Look again at the $V_{O L}$ restriction. Ideally, we want $R_{P}$ to be large, and $R_{I}$ to be small. This implies that $W_{P}=L_{I}=.5 \mu \mathrm{~m}$. If this were not the case, we could achieve the same resistances for $R_{P}$ or $R_{O}$ with proportionally smaller $L$ 's and $W$ 's, which means the total area would be smaller.

Armed with this knowledge, we can minimize the area $A=L_{P} W_{P}+2 L_{I} W_{I}$.
Substitute in $W_{P}=L_{I}=.5 \mu m$ into the area equation and the $R_{P}=9 R_{I}$ equation to get the following (note that all dimensions are in $\mu m$, units have been omitted):

$$
\begin{aligned}
A & =.5 L_{P}+W_{I} \\
\frac{L_{P}}{.5} & =9 \frac{.5}{W_{I}}
\end{aligned}
$$

Solve the second equation for $L_{P}$ and substitute it into the area equation to get

$$
A=\frac{1.125}{W_{I}}+W_{I}
$$

Take the derivative of this and set it equal to zero to find the $W_{I}$ that minimizes the area of the gate.

$$
\begin{aligned}
0 & =\frac{d}{d W_{I}}\left(\frac{1.125}{W_{I}}+W_{I}\right) \\
1 & =\frac{1.125}{W_{I}^{2}} \\
\frac{3}{2 \sqrt{2}} & =W_{I} \approx 1.0607 \mu m
\end{aligned}
$$

We can use this to find

$$
L_{P}=\frac{9}{4 W_{I}}=\frac{3}{\sqrt{2}} \approx 2.1213 \mu m
$$

The minimal total gate area is then

$$
.5 \frac{3}{\sqrt{2}}+2 * .5 \frac{3}{2 \sqrt{2}}=\frac{3}{\sqrt{2}}=2.1213(\mu m)^{2}
$$

(C) Recall that the power dissipated by resistive devices is given by $\frac{V^{2}}{R}$. The resistance between $V_{S}$ and the ground node for each of the four input states is summarized in the table below. Note that the $R_{P}$ is $3 \sqrt{2} \mathrm{k} \Omega \approx 4.2426 \mathrm{k} \Omega$ and the resistance of each of the pull-down resistors $R_{I}$ is $\frac{\sqrt{2}}{3} \mathrm{k} \Omega \approx .4714 \mathrm{k} \Omega$ from Part (B).

| A | B | R |
| :---: | :---: | :---: |
| 0 | 0 | $\infty$ |
| 0 | 1 | $\left(3 \sqrt{2}+\frac{\sqrt{2}}{3}\right) \mathrm{k} \Omega$ |
| 1 | 0 | $\left(3 \sqrt{2}+\frac{\sqrt{2}}{3}\right) \mathrm{k} \Omega$ |
| 1 | 1 | $\left(3 \sqrt{2}+\frac{\sqrt{2}}{6}\right) \mathrm{k} \Omega$ |

The total average power dissipated by the gate is the average of the power dissipated in each state (because the gate is operated in each state for equal time). This is

$$
\frac{1}{4}\left(\frac{25}{\infty \Omega} \mathrm{~W}+\frac{25}{\left(3 \sqrt{2}+\frac{\sqrt{2}}{3}\right) \mathrm{k} \Omega} \mathrm{~W}+\frac{25}{\left(3 \sqrt{2}+\frac{\sqrt{2}}{3}\right) \mathrm{k} \Omega} \mathrm{~W}+\frac{25}{\left(3 \sqrt{2}+\frac{\sqrt{2}}{6}\right) \mathrm{k} \Omega} \mathrm{~W}\right) \approx 4.0473 \mathrm{~mW}
$$

## Problem 4.4 Answer:

(A) The node between $R_{I}$ and the dependent current source is at the same potential as the ground node (they are connected!). This allows us to write out an equation for $i_{B}$ directly as

$$
i_{B}=\frac{v_{I}}{R_{I}}
$$

With this information, we can express $v_{O}$ as the sum of the voltage $V_{S}$ and the voltage drop across the resistor $R_{L}$. This gives

$$
v_{O}=V_{S}-R_{L} \beta i_{B}
$$

Substituting in the equation for $i_{B}$ above yields an expression for $v_{O}$ in terms of $v_{I}$.

$$
v_{O}=V_{S}-R_{L} \beta \frac{v_{I}}{R_{I}}
$$

(B) The equation found for $v_{O}$ in Part (A) has intercepts at $v_{O}=V_{S}$ and $v_{I}=V_{S} \frac{R_{I}}{\beta R_{L}}$. For $i_{B}>0$, $v_{I}>0$. The other restriction on valid operating ranges (given in the problem statement) is that $v_{O}>0$. These two restrictions limit the range of validity of this model to the first quadrant, graphed below.


The small signal gain $\frac{d v_{o}}{d v_{i}}$ is found by differentiating the expression for $v_{O}$ above.

$$
\frac{d v_{o}}{d v_{i}}=-\frac{R_{L} \beta}{R_{I}}
$$

## Problem 4.5 Answer:

(A) To compute the gain of the circuit $A_{v}$, we need to find an expression for $v_{o}$ in terms of $v_{i}$, and then divide both sides by $v_{i}$ to find $A_{v}=\frac{v_{o}}{v_{i}}$.
The current flowing into the resistor $R_{1}$ (from the $v_{i}$ side) is equal to the current flowing out of $R_{2}$ into the dependent voltage source. This allows us to write

$$
\frac{v_{i}-v_{1}}{R_{1}}=\frac{v_{1}-v_{o}}{R_{2}}
$$

We also know that $v_{o}$ is just

$$
v_{o}=-A v_{1}
$$

Substitute the second equation into the first for $v_{1}$ and solve for $\frac{v_{o}}{v_{i}}$.

$$
\begin{aligned}
\frac{v_{i}-v_{1}}{R_{1}} & =\frac{v_{1}-v_{o}}{R_{2}}=v_{1} \frac{1+A}{R_{2}} \\
\frac{v_{i}}{R_{1}} & =v_{1}\left(\frac{1+A}{R_{2}}+\frac{1}{R_{1}}\right) \\
\frac{v_{i}}{R_{1}} & =-\frac{v_{o}}{A}\left(\frac{1+A}{R_{2}}+\frac{1}{R_{1}}\right) \\
\frac{v_{o}}{v_{i}} & =-\frac{A R_{2}}{R_{1}(1+A)+R_{2}}
\end{aligned}
$$

(B) Let $e_{1}$ denote the potential of the node in the top right-hand side of the circuit (where $R_{2}$ meets $R_{3}$ ). If $i$ flows into this node, and $\alpha i$ flows out through the dependent current source, we know that $(1-\alpha) i$ must flow out of the node through $R_{3}$. The node voltage $e_{1}$ is given by

$$
e_{1}=R_{3}(1-\alpha) i
$$

The current $i$ can be expressed as

$$
\begin{aligned}
i & =\frac{v_{i}-e_{1}}{R_{2}}=\frac{v_{i}-R_{3}(1-\alpha) i}{R_{2}} \\
i & =\frac{v_{i}}{R_{2}+R_{3}(1-\alpha)}
\end{aligned}
$$

Combine this with KCL at the input node:

$$
i_{i}=\frac{v_{i}}{R_{1}}+i
$$

to find that

$$
i_{i}=v_{i}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}+R_{3}(1-\alpha)}\right)
$$

Solve this equation for $\frac{v_{i}}{i_{i}}$ to find $R_{T h}$. This yields

$$
R_{T h}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}+R_{3}(1-\alpha)}}=\frac{R_{1}\left(R_{2}+R_{3}(1-\alpha)\right)}{R_{1}+R_{2}+R_{3}(1-\alpha)}
$$

(C) First find $R_{T h}$. All independent sources are set to zero, which means that $v_{1}$ is going to be equal to $-v_{a}$ where $v_{a}$ is the voltage at the terminal $a$. For clarity, redraw the circuit as shown below, and define $i_{a}$ as the test current into the terminal $a$.


The Thévenin resistance is $R_{T h}=\frac{v_{a}}{i_{a}}$. Write KCL at the node $a$ to obtain

$$
\frac{v_{a}}{R_{1}}+\frac{v_{a}+g_{m} v_{a}}{R_{L}}=i_{a}
$$

Solve for $\frac{v_{a}}{i_{a}}$ to find

$$
R_{T h}=\frac{1}{\frac{1}{R_{1}}+\frac{1+g_{m}}{R_{L}}}=\frac{R_{1} R_{L}}{R_{1}\left(1+g_{m}\right)+R_{L}}
$$

Next we need to find the Thévenin voltage at terminal $a$. The resistors $R_{1}$ and $R_{L}$ form a voltage divider with the dependent voltage source. We can write

$$
v_{a}=g_{m} v_{1} \frac{R_{1}}{R_{1}+R_{L}}
$$

Writing KVL around the simple loop on the left side of the circuit gives

$$
v_{1}=v_{i}-v_{a}
$$

Substitute this equation into the first for $v_{1}$ to find

$$
v_{a}=\frac{g_{m} R_{1}}{R_{1}+R_{L}}\left(v_{i}-v_{a}\right)
$$

Solve this to find an expression for $v_{a}$ to get

$$
V_{T h}=v_{a}=v_{i} \frac{g_{m} R_{1}}{g_{m} R_{L}+R_{1}+R_{L}}
$$

