MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Problem Set 5

Issued: October 2, 2002
Due: October 9, 2002

Reading Assignment:

- A\&L Section 7.7 and Chapter 8 for Thursday, October 3.
- A\&L Chapter 8 for Tuesday, October 8.

Problem 5.1: Figures 3 and 4, at the end of this problem set, show three amplifier configurations with the MOSFET characteristics.
(A) Determine K and V_{T} for the MOSFETs used in these circuits.
(B) In each case, sketch the load line directly on the characteristics clearly indicating the slope and intercepts.
(C) For each amplifier, determine $v_{O}\left(v_{I}\right)$ assuming the MOSFET operates in its saturation region.
(D) For the amplifiers in (b) and (c), find the small-signal gain in the limit $v_{I}-V_{T} \gg 1 / 2 K R_{2}$.
(E) For each of the amplifiers, determine the range of v_{I} and v_{O} for which the MOSFET operates in saturation, i.e., $V_{T}<v_{G S}<v_{D S}+V_{T}$.

Problem 5.2: The MOSFETs M1 and M2 in the circuit of Figure 1 are characterized by $K=2 m A / V^{2}$ and $V_{T}=2 V$, while MOSFET M3 has $K=1 m A / V^{2}$ and $V_{T}=2 V$.

Figure 1: Circuit for Problem 5.2
(A) For the circuit shown in Figure 1, determine R so that $I_{C}=2 m A$ with $v_{I}=0$.
(B) For the bias condition determined in part (A), what are the currents I_{A} and I_{B}, and the node voltage E_{X} ?
(C) Now let $v_{I}=v_{i}$, a small-signal input voltage. Determine e_{x}, the small-signal component of the node voltage e_{X}, and from that determine the small-signal gain v_{o} / v_{i}.
(D) Assume now that the above amplifier operates in the large-signal, nonlinear regime. At what value of v_{I} will the output MOSFET M2 cutoff, i.e., its current decrease to 0 ?

Problem 5.3: The two MOSFETs in the circuit shown in Figure 2(a) are identical and characterized by the $i_{D S^{-}} v_{D S}$ relationship shown in Figure 2(b). Note that in the triode region the characteristics are approximated by a single $i_{D S}-v_{D S}$ relationship that is independent of $v_{G S}$ and that M1 and M2 are characterized by the same values of K and V_{T} as for the MOSFETs in Problem 5.1.

Figure 2: Circuit for Problem 5.3
(A) Determine and graph i_{O} vs. i_{S} for $i_{S}>0$. Explain why this circuit is called a "current mirror".
(B) Repeat part (A) with a $1 k \Omega$ load resistor between the drain of M 2 and the V_{S} rail.

Figure 3: Circuits (a) and (b) for Problem 5.1

Figure 4: Circuit (c) for Problem 5.1

