MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.002 – Electronic Circuits Fall 2002

Problem Set 5

Issued: October 2, 2002

Due: October 9, 2002

Reading Assignment:

- A&L Section 7.7 and Chapter 8 for Thursday, October 3.
- A&L Chapter 8 for Tuesday, October 8.

Problem 5.1: Figures 3 and 4, at the end of this problem set, show three amplifier configurations with the MOSFET characteristics.

- (A) Determine K and V_T for the MOSFETs used in these circuits.
- (B) In each case, sketch the load line directly on the characteristics clearly indicating the slope and intercepts.
- (C) For each amplifier, determine $v_O(v_I)$ assuming the MOSFET operates in its saturation region.
- (D) For the amplifiers in (b) and (c), find the small-signal gain in the limit $v_I V_T >> 1/2KR_2$.
- (E) For each of the amplifiers, determine the range of v_I and v_O for which the MOSFET operates in saturation, i.e., $V_T < v_{GS} < v_{DS} + V_T$.

Problem 5.2: The MOSFETs M1 and M2 in the circuit of Figure 1 are characterized by $K = 2mA/V^2$ and $V_T = 2V$, while MOSFET M3 has $K = 1mA/V^2$ and $V_T = 2V$.

Figure 1: Circuit for Problem 5.2

- (A) For the circuit shown in Figure 1, determine R so that $I_C = 2mA$ with $v_I = 0$.
- (B) For the bias condition determined in part (A), what are the currents I_A and I_B , and the node voltage E_X ?
- (C) Now let $v_I = v_i$, a small-signal input voltage. Determine e_x , the small-signal component of the node voltage e_X , and from that determine the small-signal gain v_o/v_i .
- (D) Assume now that the above amplifier operates in the large-signal, nonlinear regime. At what value of v_I will the output MOSFET M2 cutoff, i.e., its current decrease to 0?

Problem 5.3: The two MOSFETs in the circuit shown in Figure 2(a) are identical and characterized by the i_{DS} - v_{DS} relationship shown in Figure 2(b). Note that in the triode region the characteristics are approximated by a single i_{DS} - v_{DS} relationship that is independent of v_{GS} and that M1 and M2 are characterized by the same values of K and V_T as for the MOSFETs in Problem 5.1.

Figure 2: Circuit for Problem 5.3

- (A) Determine and graph i_O vs. i_S for $i_S > 0$. Explain why this circuit is called a "current mirror".
- (B) Repeat part (A) with a $1k\Omega$ load resistor between the drain of M2 and the V_S rail.

Figure 3: Circuits (a) and (b) for Problem 5.1

Figure 4: Circuit (c) for Problem 5.1