Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Electronic Circuits
 Fall 2002

Homework \#5 Solutions

Problem 5.1 Answer:

(A) In the saturation regime, the equation for the drain current, i_{D} is

$$
i_{D}=\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2}
$$

Looking at the MOSFET charecteristics, we see that for $v_{G S}=6 \mathrm{~V}$, the $i_{D S}$ vs $v_{D S}$ curve passes through the point $i_{D}=8 \mathrm{~mA}$ and $v_{D S}=4 \mathrm{~V}$. This occurs along the parabola that seperates the triode region from the saturation region, so we additionally know that $v_{D S}=v_{G S}-V_{T}$. Substitute numbers into the above equations to find

$$
\begin{aligned}
v_{D S} & =v_{G S}-V_{T} \\
4 \mathrm{~V} & =6 \mathrm{~V}-V_{T} \\
V_{T} & =2 \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
i_{D} & =\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2} \\
8 \mathrm{~mA} & =\frac{K}{2}(4 \mathrm{~V})^{2} \\
K & =1 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}}
\end{aligned}
$$

(B) (a) For this circuit, $v_{D S}=v_{O}=V_{S}-R_{1} i_{D S}$. When $i_{D S}=0, v_{D S}=V_{S}$. When $v_{D S}=0$, $i_{D S}=\frac{V_{S}}{R_{1}}$. The slope of this line is $-\frac{1}{R_{1}}$. It is plotted on the figure below.

(b) For this circuit, $v_{D S}=V_{S}-v_{O}=V_{S}-R_{2} i_{D S}$. When $i_{D S}=0, v_{D S}=V_{S}$. When $v_{D S}=0$, $i_{D S}=\frac{V_{S}}{R_{2}}$. The slope of this line is $-\frac{1}{R_{2}}$. It is plotted on the figure below.

(c) For this circuit, $v_{D S}=V_{S}-\left(R_{1}+R_{2}\right) i_{D S}$. When $i_{D S}=0, v_{D S}=V_{S}$. When $v_{D S}=0$, $i_{D S}=\frac{V_{S}}{R_{1}+R_{2}}$. Thes slope of this line is $-\frac{1}{R_{1}+R_{2}}$. It is plotted on the figure below.

(C) If the amplifier is operating in its saturation regime, we know that $i_{D S}=\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2}$, where K and V_{T} are the parameters we found in Part (A).
(a) For this amplifier, $v_{G S}=v_{I}$. The output voltage is $v_{O}=V_{S}-i_{D S} R_{1}$. We can write

$$
v_{O}=V_{S}-\frac{K R_{1}}{2}\left(v_{I}-V_{T}\right)^{2}
$$

(b) This amplifier is more complicated to analyze. The output voltage is only $v_{O}=R_{2} i_{D S}$. The gate-source voltage is no longer v_{I}, it is $v_{G S}=v_{I}-v_{O}$. We can write

$$
v_{O}=\frac{K R_{2}}{2}\left(v_{I}-V_{T}-v_{O}\right)^{2}
$$

For simplicity, let $v_{X}=v_{I}-V_{T}$. Expand the quadratic above to get

$$
\frac{K R_{2}}{2} v_{O}^{2}-\left(K R_{2} v_{X}+1\right) v_{O}+\frac{K R_{2}}{2} v_{X}^{2}=0
$$

Use the quadratic equation to solve for v_{O} and find:

$$
v_{O}=\frac{K R_{2} v_{X}+1 \pm \sqrt{\left(K R_{2} v_{X}+1\right)^{2}-\left(K R_{2} v_{X}\right)^{2}}}{K R_{2}}
$$

Substitute $v_{I}-V_{T}$ back in for v_{X} and simplify:

$$
v_{O}=v_{I}-V_{T}+\frac{1}{K R_{2}} \pm \sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}
$$

This gives us two possible answers for v_{O}, but which one is correct? We know that $v_{G S}>V_{T}$. We also know that $v_{G S}=v_{I}-v_{O}$, consequently $v_{I}-V_{T}>v_{O}$. Given the expression for v_{O} above, this means that

$$
v_{I}-V_{T}>v_{I}-V_{T}+\frac{1}{K R_{2}} \pm \sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}
$$

or

$$
0>\frac{1}{K R_{2}} \pm \sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}
$$

Clearly, the \pm should be a minus sign for our expression for v_{O} to make sense. The final answer is then

$$
v_{O}=v_{I}-V_{T}+\frac{1}{K R_{2}}-\sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}
$$

(c) The analysis of this amplifier is similiar. We can see that $v_{O}=V_{S}-R_{1} i_{D S}$. Also note that $v_{G S}=v_{I}-R_{2} i_{D S}$. We can't just substitute into the equation for the drain current and solve, though, because $v_{G S}$ above is written in terms of the drain current. Realize, though, that the voltage across R_{2} does not depend on R_{1} as long as the MOSFET is in the saturation region. From the voltage across R_{2} we can find $i_{D S}$, which gives v_{O} from the equation above. We know the voltage across R_{2} from circuit (b) above. It is

$$
v_{R_{2}}=v_{I}-V_{T}+\frac{1}{K R_{2}}-\sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}
$$

Using this, v_{O} for this circuit is

$$
\begin{aligned}
& v_{O}=V_{S}-R_{1} i_{D S} \\
& v_{O}=V_{S}-R_{1} \frac{v_{R_{2}}}{R_{2}} \\
& v_{O}=V_{S}-\frac{R_{1}}{R_{2}}\left(v_{I}-V_{T}+\frac{1}{K R_{2}}-\sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}\right)
\end{aligned}
$$

(D) For each amplifier find $\frac{d v_{o}}{d v_{i}}$ by differentiating the expressions found for v_{O} in Part (C). Simplify this with the assumption that $v_{I}-V_{T} \gg \frac{1}{2 K R_{2}} . \mathrm{F}$
(b) First, differentiate the expression for v_{O} in terms of v_{I} from Part (C) above for circuit (b)

$$
\begin{aligned}
\frac{d v_{O}}{d v_{I}} & =\frac{d}{d v_{I}}\left[v_{I}-V_{T}+\frac{1}{K R_{2}}-\sqrt{\left(v_{I}-V_{T}+\frac{1}{K R_{2}}\right)^{2}-\left(v_{I}-V_{T}\right)^{2}}\right] \\
& =1-\frac{d}{d v_{I}}\left[\sqrt{\frac{2\left(v_{I}-V_{T}\right)}{K R_{2}}+\left(\frac{1}{K R_{2}}\right)^{2}}\right] \\
& =1-\frac{1}{K R_{2}}\left(\frac{2\left(v_{I}-V_{T}\right)}{K R_{2}}+\left(\frac{1}{K R_{2}}\right)^{2}\right)^{-.5} \\
& =1-\left(2 K R_{2}\left(v_{I}-V_{T}\right)+1\right)^{-.5}
\end{aligned}
$$

If we assume that $v_{I}-V_{T} \gg \frac{1}{2 K R_{2}}$, then $2 K R_{2}\left(v_{I}-V_{T}\right) \gg 1$ and the expression above simplifies to

$$
\frac{d v_{O}}{d v_{I}}=1
$$

(c) Recall that the drain current of this circuit, $i_{D S}$ is equal to the output voltage of circuit (b) divided by the resistanct R_{2}. We can write the following, where $v_{O, b}$ is the expression for the output voltage of circuit (b)

$$
\begin{aligned}
\frac{d v_{O}}{d v_{I}} & =\frac{d}{d v_{I}}\left[V_{S}-\frac{R_{1}}{R_{2}} v_{O, b}\right] \\
& =-\frac{R_{1}}{R_{2}} \frac{d v_{O, b}}{d v_{I}}
\end{aligned}
$$

We found $\frac{d v_{O, b}}{d v_{I}}$ above, it is just 1. So for circuit (c) the small signal gain $\frac{d v_{O}}{d v_{I}}$ is

$$
\frac{d v_{O}}{d v_{I}}=-\frac{R_{1}}{R_{2}}
$$

(E) For all of the amplifiers, when $v_{I}<V_{T}$ the MOSFETS are all in the cutoff region, and the drain currents are zero. So, the lower bound on v_{I} is V_{T}. That is, the MOSFETS are in saturation for $v_{I}>V_{T}$. The upper bound for each circuit depends on keeping $v_{G S}<v_{D S}+V_{T}$.
(a) For this amplifer, $v_{D S}=v_{O}$ and $v_{G S}=v_{I}$. Using our results from Part (C) for v_{O}, the MOSFET leaves the saturation regime when

$$
v_{I}-V_{T}=V_{S}-\frac{K R_{1}}{2}\left(v_{I}-V_{T}\right)^{2}
$$

Solve this quadratic (using the quadratic formula) to find that

$$
v_{I}=V_{T}+\frac{-1+\sqrt{1+2 K R_{1} V_{S}}}{K R_{1}}
$$

So the MOSFET operates in the saturation region for

$$
V_{T}<v_{I}<V_{T}+\frac{-1+\sqrt{1+2 K R_{1} V_{S}}}{K R_{1}}
$$

and

$$
\frac{1+\sqrt{-1+2 K R_{1} V_{S}}}{K R_{1}}<v_{O}<V_{S}
$$

(b) For this circuit, $v_{D S}=V_{S}-v_{O}$ and $v_{G S}=v_{I}-v_{O}$. The MOSFET is in saturation for

$$
v_{I}-v_{O}<V_{T}+V_{S}-v_{O}
$$

or

$$
v_{i}<V_{T}+V_{S}
$$

So the MOSFET is in saturation for

$$
V_{T}<v_{I}<V_{T}+V_{S}
$$

and

$$
0<v_{O}<V_{S}+\frac{1}{K R_{2}}-\sqrt{\left(V_{S}+\frac{1}{K R_{2}}\right)^{2}-V_{S}^{2}}
$$

(c) Realize that at the saturation region's boundary that $v_{G S}-V_{T}=v_{D S}$. We also know that i_{D} will be equal to $\frac{V_{S}-v_{D S}}{R_{1}+R_{2}}$. This gives

$$
\frac{K}{2} v_{D S}^{2}=\frac{V_{S}-v_{D S}}{R_{1}+R_{2}}
$$

Use the quadratic equation to find this value of $v_{D S}$, and call it $v_{D S}^{*}$.

$$
v_{D S}^{*}=-\frac{1}{K\left(R_{1}+R_{2}\right)}+\sqrt{\left(\frac{1}{K\left(R_{1}+R_{2}\right)}\right)^{2}+\frac{2 V_{S}}{K\left(R_{1}+R_{2}\right)}}
$$

Given this, the output voltage at the saturation-triode boundary is

$$
\begin{aligned}
v_{O} & =v_{D S}^{*}+R_{2} i_{D S} \\
v_{O} & =v_{D S}^{*}+R_{2}\left(\frac{V_{S}-v_{D S}}{R_{1}+R_{2}}\right) \\
v_{O} & =\frac{R_{1}}{R_{1}+R_{2}} v_{D S}^{*}+\frac{R_{2}}{R_{1}+R_{2}} V_{S} \\
v_{O} & =\frac{R_{1}}{R_{1}+R_{2}}\left(-\frac{1}{K\left(R_{1}+R_{2}\right)}+\sqrt{\left(\frac{1}{K\left(R_{1}+R_{2}\right)}\right)^{2}+\frac{2 V_{S}}{K\left(R_{1}+R_{2}\right)}}\right)+\frac{R_{2}}{R_{1}+R_{2}} V_{S}
\end{aligned}
$$

What about v_{I} at the boundary? Since $v_{G S}-V_{T}=v_{D S}$ at the boundary:

$$
v_{I}^{*}-v_{R_{2}}^{*}-V_{T}=v_{D S}^{*}
$$

so

$$
\begin{aligned}
v_{I}^{*} & =v_{O}^{*}+V_{T} \\
v_{I}^{*} & =V_{T}+\frac{R_{1}}{R_{1}+R_{2}}\left(-\frac{1}{K\left(R_{1}+R_{2}\right)}+\sqrt{\left(\frac{1}{K\left(R_{1}+R_{2}\right)}\right)^{2}+\frac{2 V_{S}}{K\left(R_{1}+R_{2}\right)}}\right)+\frac{R_{2}}{R_{1}+R_{2}} V_{S}
\end{aligned}
$$

Problem 5.2 Answer:

(A) Assume that $v_{D S}$ of M 3 is sufficient to keep it operating in the saturation region. The gatesource voltage of M3 is the voltage drop across the resistor R, which is $\frac{R}{R+8 \mathrm{k} \Omega} 20 \mathrm{~V}$. The current i_{C} is then

$$
i_{C}=\frac{1 \mathrm{~mA} / \mathrm{V}^{2}}{2}\left(\frac{20 R}{R+8 \mathrm{k} \Omega}-V_{T}\right)^{2}
$$

We can solve this for R :

$$
\begin{aligned}
2 \mathrm{~mA} & =\frac{1 \mathrm{~mA} / \mathrm{V}^{2}}{2}\left(\frac{20 R}{R+8 \mathrm{k} \Omega}-V_{T}\right)^{2} \\
4 \mathrm{~V}^{2} & =\left(\frac{20 R}{R+8 \mathrm{k} \Omega}-2 \mathrm{~V}\right)^{2} \\
4 & =20 \frac{R}{R+8 \mathrm{k} \Omega} \\
8 \mathrm{k} \Omega & =4 R \\
2 \mathrm{k} \Omega & =R
\end{aligned}
$$

We will validate the assumption that M 3 operates in saturation for $v_{I}=0$ in Part (B) below.
(B) With $v_{I}=0$, both M1 and M2 will have identical $v_{G S}$ voltages. The currents through the two transistors will be idential (as long as they are both in the saturation region - we will prove this below). The sum of i_{A} and i_{B} is $i_{C}=2 \mathrm{~mA}$, so $i_{A}=i_{B}=1 \mathrm{~mA}$. The gate-source voltage of M1 and M2 is equal to $-e_{X}$. We can solve the drain current equation for $v_{G S}$ for M1 and find e_{X} :

$$
\begin{aligned}
1 \mathrm{~mA} & =\frac{2 \mathrm{~mA} / V^{2}}{2}\left(-e_{X}-V_{T}\right)^{2} \\
1 & =-e_{X}-2 \mathrm{~V} \\
-3 \mathrm{~V} & =e_{X}
\end{aligned}
$$

Note that the $e_{X}=-1$ also satisfies the above quadratic, but it would mean that $v_{G S}<V_{T}$ for both MOSFETs, putting them in the cutoff region.

Let's confirm that both M2 and M3 are operating, then, in their saturation regimes. For M3, $v_{D S}=-3+10=7 \mathrm{~V}$, which is greater than $v_{G S}-V_{T}=2 \mathrm{~V}$, so it is operating in the saturation regime. For M2, $v_{O}=10-5 \mathrm{k} \Omega * 1 \mathrm{~mA}=5 \mathrm{~V}$. Then $v_{D S}=5--3=8 \mathrm{~V}$ which is greater than $v_{G S}-V_{T}=1 \mathrm{~V}$.
(C) We know that the sum of the currents i_{A} and i_{B} must be 2 mA . We can write

$$
\frac{K}{2}\left(v_{G S 1}-V_{T}\right)^{2}+\frac{K}{2}\left(v_{G S 2}-V_{T}\right)^{2}=2 m A
$$

where $v_{G S 1}=v_{I}-e_{X}$ and $v_{G S 2}=-e_{X}$. Take the Taylor-series expasion of this to arrive at

$$
\frac{K}{2}\left(V_{G S 1}-V_{T}\right)^{2}+K\left(V_{G S 1}-V_{T}\right) v_{g s 1}+\frac{K}{2}\left(V_{G S 2}-V_{T}\right)^{2}+K\left(V_{G S 2}-V_{T}\right) v_{g s 2}=2 m A
$$

Now, subtract the first equation evaluated at the operating point determined by $V_{G S 1}$ and $V_{G S 2}$ to get

$$
K\left(V_{G S 1}-V_{T}\right) v_{g s 1}+K\left(V_{G S 2}-V_{T}\right) v_{g s 2}=0
$$

We know that $V_{G S 1}=V_{I}-E_{X}=-E_{X}$ and that $V_{G S 2}=-E_{X}$. We also know that $v_{g s 1}=v_{i}-e_{x}$ and $v_{g s 2}=-e_{x}$. Substitute these into the above equation:

$$
K\left(-E_{X}-V_{T}\right)\left(v_{i}-e_{x}\right)+K\left(-E_{X}-V_{T}\right)\left(-e_{x}\right)=0
$$

Solving this for e_{x} yields

$$
e_{x}=\frac{v_{i}}{2}
$$

The output voltage v_{O} is

$$
v_{O}=V_{S}-\frac{K * 5 \mathrm{k} \Omega}{2}\left(-e_{X}-V_{T}\right)^{2}
$$

Take the Taylor-series expansion of this and subtract out the operating point to get

$$
v_{o}=-K * 5 \mathrm{k} \Omega\left(-E_{X}-V_{T}\right)\left(-e_{x}\right)
$$

Substitute values into this equation and take the derivative with respect to v_{i} to find the small signal gain:

$$
\begin{aligned}
\frac{d v_{o}}{d v_{i}} & =\frac{d}{d v_{i}}\left[-K * 5 \mathrm{k} \Omega\left(-E_{X}-V_{T}\right)\left(-e_{x}\right)\right] \\
& =\frac{d}{d v_{i}}\left[-2 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}} * 5 \mathrm{k} \Omega(3-2)\left(-\frac{v_{i}}{2}\right)\right] \\
& =\frac{d}{d v_{i}}\left[-10\left(-\frac{v_{i}}{2}\right)\right] \\
& =5
\end{aligned}
$$

(D) When M2 enters the cutoff region, its $v_{G S}$ voltage will be equal to V_{T}. This means that $e_{X}=-V_{T}$. All of the current i_{C} will have to flow through M1 (because M2 is cutoff). Recall that M1's $v_{G S}=v_{I}-e_{X}=v_{I}+V_{T}$. So, solve M1's drain current equation for v_{I} :

$$
\begin{aligned}
2 \mathrm{~mA} & =\frac{2 \mathrm{~mA} / \mathrm{V}^{2}}{2}\left(v_{G S}-V_{T}\right)^{2} \\
\sqrt{2} \mathrm{~V} & =v_{I}
\end{aligned}
$$

When $v_{I}=1 \mathrm{~V}$ MOSFET M2 will enter the cutoff region, and our model for the circuit is no longer valid.

Problem 5.3 Answer:

(A) MOSFET M1's gate and drain terminals are tied together. This means that $v_{G S}=v_{D S}$ for M1. This ensures that $v_{D S}>v_{G S}-V_{T}$, so M1 is always operating in its saturation region. We can express its drain current, then, as a function of $v_{G S}$ as follows:

$$
i_{S}=\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2}
$$

Solve this equation for $v_{G S}$ to find

$$
v_{G S}=V_{T}+\sqrt{\frac{2 i_{S}}{K}}
$$

From the circuit diagram we can see that $v_{G S}$ of M 1 is equal to $v_{G S}$ of M 2 . As long as $v_{G S}-v_{T}<10 \mathrm{~V}$ MOSFET M2 will operate in the saturation regime. This means that

$$
\begin{aligned}
v_{G S}-V_{T} & <10 \mathrm{~V} \\
\sqrt{\frac{2 i_{S}}{K}} & <10 \mathrm{~V} \\
i_{S} & <50 \mathrm{~mA}
\end{aligned}
$$

So as long as $i_{S}<50 \mathrm{~mA}$ M2 operates in the saturation region. Substitute the expression for $v_{G S}$ above to find i_{O}.

$$
\begin{aligned}
i_{O} & =\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2} \\
i_{O} & =\frac{K}{2}\left(V_{T}+\sqrt{\frac{2 i_{S}}{K}}-V_{T}\right)^{2} \\
i_{O} & =\frac{K}{2} \frac{2 i_{S}}{K} \\
i_{O} & =i_{S}
\end{aligned}
$$

This circuit is called a "current mirror" because the output current is always equal to the input current. It is "mirrored" around the circuit by the MOSFETS. A graph of i_{O} vs. i_{S} is shown below.

(B) With a $1 \mathrm{k} \Omega$ load resistor between the drain of M 2 and the V_{S} rail, the $v_{D S}$ of M 2 is given by

$$
v_{D S}=10 \mathrm{~V}-i_{O} * 1 \mathrm{k} \Omega
$$

As long as this value stays greater than $v_{G S}-V_{T}$ (where $v_{G S}$ is determined by i_{S} and M1) M2 will operate in its saturation regime, and $i_{O}=i_{S}$. Substituting in the values for K and V_{T} found from Problem 1 we find

$$
\begin{aligned}
v_{D S} & >v_{G S}-V_{T} \\
10-i_{S} * 1 \mathrm{k} \Omega & >\sqrt{\frac{2 i_{S}}{K}} \\
100-i_{S} * 2 \times 10^{4}+i_{S}^{2} * \times 10^{6} & >i_{S} * 2 \times 10^{3}
\end{aligned}
$$

This inequality becomes false when i_{S} satisfies the polynomial

$$
i_{S}^{2} \times 10^{6}-i_{S}\left(2 \times 10^{4}+2 \times 10^{3}\right)+100=0
$$

Solving for i_{S} gives

$$
i_{S}=15.583 \mathrm{~mA} \quad \text { or } \quad 6.417 \mathrm{~mA}
$$

Only the second answer to the quadratic above satisfies the inquality. For any current i_{S} less than this, the inequality will also be true. So, $i_{O}=i_{S}$ as long as

$$
i_{S}<6.417 \mathrm{~mA}
$$

A graph of i_{O} vs. i_{S} is shown below.

