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Homework #5 Solutions

Problem 5.1 Answer:

(A) In the saturation regime, the equation for the drain current, iD is

iD =
K

2
(vGS − VT )2

Looking at the MOSFET charecteristics, we see that for vGS = 6V, the iDS vs vDS curve passes
through the point iD = 8mA and vDS = 4V. This occurs along the parabola that seperates
the triode region from the saturation region, so we additionally know that vDS = vGS − VT .
Substitute numbers into the above equations to find

vDS = vGS − VT

4V = 6V − VT

VT = 2V

and

iD =
K

2
(vGS − VT )2

8mA =
K

2
(4V)2

K = 1
mA
V2

(B) (a) For this circuit, vDS = vO = VS − R1iDS . When iDS = 0, vDS = VS . When vDS = 0,
iDS = VS

R1
. The slope of this line is − 1

R1
. It is plotted on the figure below.
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(b) For this circuit, vDS = VS − vO = VS −R2iDS . When iDS = 0, vDS = VS . When vDS = 0,
iDS = VS

R2
. The slope of this line is − 1

R2
. It is plotted on the figure below.
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(c) For this circuit, vDS = VS − (R1 + R2)iDS . When iDS = 0, vDS = VS . When vDS = 0,
iDS = VS

R1+R2
. Thes slope of this line is − 1

R1+R2
. It is plotted on the figure below.
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(C) If the amplifier is operating in its saturation regime, we know that iDS = K
2 (vGS −VT )2, where

K and VT are the parameters we found in Part (A).

(a) For this amplifier, vGS = vI . The output voltage is vO = VS − iDSR1. We can write

vO = VS − KR1

2
(vI − VT )2

(b) This amplifier is more complicated to analyze. The output voltage is only vO = R2iDS .
The gate-source voltage is no longer vI , it is vGS = vI − vO. We can write

vO =
KR2

2
(vI − VT − vO)2



For simplicity, let vX = vI − VT . Expand the quadratic above to get

KR2

2
v2
O − (KR2vX + 1)vO +

KR2

2
v2
X = 0

Use the quadratic equation to solve for vO and find:

vO =
KR2vX + 1±

√
(KR2vX + 1)2 − (KR2vX)2

KR2

Substitute vI − VT back in for vX and simplify:

vO = vI − VT +
1

KR2
±

√(
vI − VT +

1
KR2

)2

− (vI − VT )2

This gives us two possible answers for vO, but which one is correct? We know that
vGS > VT . We also know that vGS = vI − vO, consequently vI − VT > vO. Given the
expression for vO above, this means that

vI − VT > vI − VT +
1

KR2
±

√(
vI − VT +

1
KR2

)2

− (vI − VT )2

or

0 >
1

KR2
±

√(
vI − VT +

1
KR2

)2

− (vI − VT )2

Clearly, the ± should be a minus sign for our expression for vO to make sense. The final
answer is then

vO = vI − VT +
1

KR2
−

√(
vI − VT +

1
KR2

)2

− (vI − VT )2

(c) The analysis of this amplifier is similiar. We can see that vO = VS − R1iDS . Also note
that vGS = vI − R2iDS . We can’t just substitute into the equation for the drain current
and solve, though, because vGS above is written in terms of the drain current. Realize,
though, that the voltage across R2 does not depend on R1 as long as the MOSFET is in
the saturation region. From the voltage across R2 we can find iDS , which gives vO from
the equation above. We know the voltage across R2 from circuit (b) above. It is

vR2 = vI − VT +
1

KR2
−

√(
vI − VT +

1
KR2

)2

− (vI − VT )2

Using this, vO for this circuit is

vO = VS − R1iDS

vO = VS − R1
vR2

R2

vO = VS − R1

R2


vI − VT +

1
KR2

−
√(

vI − VT +
1

KR2

)2

− (vI − VT )2






(D) For each amplifier find dvo
dvi

by differentiating the expressions found for vO in Part (C). Simplify
this with the assumption that vI − VT >> 1

2KR2
. F

(b) First, differentiate the expression for vO in terms of vI from Part (C) above for circuit (b)

dvO

dvI
=

d

dvI


vI − VT +

1
KR2

−
√(

vI − VT +
1

KR2

)2

− (vI − VT )2




= 1− d

dvI




√
2(vI − VT )

KR2
+

(
1

KR2

)2



= 1− 1
KR2

(
2(vI − VT )

KR2
+

(
1

KR2

)2
)−.5

= 1− (2KR2(vI − VT ) + 1)
−.5

If we assume that vI −VT >> 1
2KR2

, then 2KR2(vI −VT ) >> 1 and the expression above
simplifies to

dvO

dvI
= 1

(c) Recall that the drain current of this circuit, iDS is equal to the output voltage of circuit
(b) divided by the resistanct R2. We can write the following, where vO,b is the expression
for the output voltage of circuit (b)

dvO

dvI
=

d

dvI

[
VS − R1

R2
vO,b

]

= −R1

R2

dvO,b

dvI

We found dvO,b

dvI
above, it is just 1. So for circuit (c) the small signal gain dvO

dvI
is

dvO

dvI
= −R1

R2

(E) For all of the amplifiers, when vI < VT the MOSFETS are all in the cutoff region, and the drain
currents are zero. So, the lower bound on vI is VT . That is, the MOSFETS are in saturation
for vI > VT . The upper bound for each circuit depends on keeping vGS < vDS + VT .

(a) For this amplifer, vDS = vO and vGS = vI . Using our results from Part (C) for vO, the
MOSFET leaves the saturation regime when

vI − VT = VS − KR1

2
(vI − VT )2

Solve this quadratic (using the quadratic formula) to find that

vI = VT +
−1 +√

1 + 2KR1VS

KR1



So the MOSFET operates in the saturation region for

VT < vI < VT +
−1 +√

1 + 2KR1VS

KR1

and

1 +
√−1 + 2KR1VS

KR1
< vO < VS

(b) For this circuit, vDS = VS − vO and vGS = vI − vO. The MOSFET is in saturation for

vI − vO < VT + VS − vO

or

vi < VT + VS

So the MOSFET is in saturation for

VT < vI < VT + VS

and

0 < vO < VS +
1

KR2
−

√(
VS +

1
KR2

)2

− V 2
S

(c) Realize that at the saturation region’s boundary that vGS −VT = vDS . We also know that
iD will be equal to VS−vDS

R1+R2
. This gives

K

2
v2
DS =

VS − vDS

R1 +R2

Use the quadratic equation to find this value of vDS , and call it v∗DS .

v∗DS = − 1
K(R1 +R2)

+

√(
1

K(R1 +R2)

)2

+
2VS

K(R1 +R2)

Given this, the output voltage at the saturation-triode boundary is

vO = v∗DS +R2iDS

vO = v∗DS +R2

(
VS − vDS

R1 +R2

)

vO =
R1

R1 +R2
v∗DS +

R2

R1 +R2
VS

vO =
R1

R1 +R2


− 1

K(R1 +R2)
+

√(
1

K(R1 +R2)

)2

+
2VS

K(R1 +R2)


+

R2

R1 +R2
VS

What about vI at the boundary? Since vGS − VT = vDS at the boundary:

v∗I − v∗R2
− VT = v∗DS



so

v∗I = v∗O + VT

v∗I = VT +
R1

R1 +R2


− 1

K(R1 +R2)
+

√(
1

K(R1 +R2)

)2

+
2VS

K(R1 +R2)


+

R2

R1 +R2
VS

Problem 5.2 Answer:

(A) Assume that vDS of M3 is sufficient to keep it operating in the saturation region. The gate-
source voltage of M3 is the voltage drop across the resistor R, which is R

R+8kΩ20V. The current
iC is then

iC =
1mA/V2

2

(
20R

R+ 8kΩ
− VT

)2

We can solve this for R:

2mA =
1mA/V2

2

(
20R

R+ 8kΩ
− VT

)2

4V2 =
(

20R
R+ 8kΩ

− 2V
)2

4 = 20
R

R+ 8kΩ
8kΩ = 4R
2kΩ = R

We will validate the assumption that M3 operates in saturation for vI = 0 in Part (B) below.

(B) With vI = 0, both M1 and M2 will have identical vGS voltages. The currents through the two
transistors will be idential (as long as they are both in the saturation region – we will prove
this below). The sum of iA and iB is iC = 2mA, so iA = iB = 1mA. The gate-source voltage
of M1 and M2 is equal to −eX . We can solve the drain current equation for vGS for M1 and
find eX :

1mA =
2mA/V 2

2
(−eX − VT )2

1 = −eX − 2V
−3V = eX

Note that the eX = −1 also satisfies the above quadratic, but it would mean that vGS < VT

for both MOSFETs, putting them in the cutoff region.

Let’s confirm that both M2 and M3 are operating, then, in their saturation regimes. For M3,
vDS = −3+10 = 7V, which is greater than vGS −VT = 2V, so it is operating in the saturation
regime. For M2, vO = 10− 5kΩ ∗ 1mA = 5V. Then vDS = 5−−3 = 8V which is greater than
vGS − VT = 1V.

(C) We know that the sum of the currents iA and iB must be 2mA. We can write

K

2
(vGS1 − VT )2 +

K

2
(vGS2 − VT )2 = 2mA



where vGS1 = vI − eX and vGS2 = −eX . Take the Taylor-series expasion of this to arrive at

K

2
(VGS1 − VT )2 +K(VGS1 − VT )vgs1 +

K

2
(VGS2 − VT )2 +K(VGS2 − VT )vgs2 = 2mA

Now, subtract the first equation evaluated at the operating point determined by VGS1 and
VGS2 to get

K(VGS1 − VT )vgs1 +K(VGS2 − VT )vgs2 = 0

We know that VGS1 = VI−EX = −EX and that VGS2 = −EX . We also know that vgs1 = vi−ex

and vgs2 = −ex. Substitute these into the above equation:

K(−EX − VT )(vi − ex) +K(−EX − VT )(−ex) = 0

Solving this for ex yields

ex =
vi

2

The output voltage vO is

vO = VS − K ∗ 5kΩ
2

(−eX − VT )2

Take the Taylor-series expansion of this and subtract out the operating point to get

vo = −K ∗ 5kΩ(−EX − VT )(−ex)

Substitute values into this equation and take the derivative with respect to vi to find the small
signal gain:

dvo

dvi
=

d

dvi
[−K ∗ 5kΩ(−EX − VT )(−ex)]

=
d

dvi

[
−2mA

V2
∗ 5kΩ(3− 2)

(
−vi

2

)]

=
d

dvi

[
−10

(
−vi

2

)]
= 5

(D) When M2 enters the cutoff region, its vGS voltage will be equal to VT . This means that
eX = −VT . All of the current iC will have to flow through M1 (because M2 is cutoff). Recall
that M1’s vGS = vI − eX = vI + VT . So, solve M1’s drain current equation for vI :

2mA =
2mA/V2

2
(vGS − VT )2

√
2V = vI

When vI = 1V MOSFET M2 will enter the cutoff region, and our model for the circuit is no
longer valid.



Problem 5.3 Answer:

(A) MOSFET M1’s gate and drain terminals are tied together. This means that vGS = vDS for
M1. This ensures that vDS > vGS − VT , so M1 is always operating in its saturation region.
We can express its drain current, then, as a function of vGS as follows:

iS =
K

2
(vGS − VT )2

Solve this equation for vGS to find

vGS = VT +

√
2iS
K

From the circuit diagram we can see that vGS of M1 is equal to vGS of M2. As long as
vGS − vT < 10V MOSFET M2 will operate in the saturation regime. This means that

vGS − VT < 10V√
2iS
K

< 10V

iS < 50mA

So as long as iS < 50mA M2 operates in the saturation region. Substitute the expression for
vGS above to find iO.

iO =
K

2
(vGS − VT )

2

iO =
K

2

(
VT +

√
2iS
K

− VT

)2

iO =
K

2
2iS
K

iO = iS

This circuit is called a “current mirror” because the output current is always equal to the input
current. It is “mirrored” around the circuit by the MOSFETS. A graph of iO vs. iS is shown
below.
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(B) With a 1kΩ load resistor between the drain of M2 and the VS rail, the vDS of M2 is given by

vDS = 10V − iO ∗ 1kΩ

As long as this value stays greater than vGS − VT (where vGS is determined by iS and M1)
M2 will operate in its saturation regime, and iO = iS . Substituting in the values for K and
VT found from Problem 1 we find

vDS > vGS − VT

10− iS ∗ 1kΩ >

√
2iS
K

100− iS ∗ 2× 104 + i2S ∗ ×106 > iS ∗ 2× 103

This inequality becomes false when iS satisfies the polynomial

i2S × 106 − iS(2× 104 + 2× 103) + 100 = 0

Solving for iS gives

iS = 15.583mA or 6.417mA

Only the second answer to the quadratic above satisfies the inquality. For any current iS less
than this, the inequality will also be true. So, iO = iS as long as

iS < 6.417mA

A graph of iO vs. iS is shown below.
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