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Problem 6.1 Answer:

(A) For M1, vGS = vIN . When vIN < VT , M1 is in the cutoff region, and vA = 10V. When
vIN > VT the MOSFET enters the saturation region. The output voltage of the first stage, vA

is given by

vA = 10V − 5kΩ ∗ 2mA
2V2

(vIN − 2V)2

The MOSFET enters the saturation region when vDS = vGS − VT . Using the equation for vA

above (remember that vA = vDS) we can write out a quadratic equation for vIN :

vIN − VT = 10V − (5V−1)2V2(vIN − 2V)2

Using the quadratic equation we find M1 enters the triode region when:

vIN ≈ 3.318V and vA ≈ 1.318V

The triode region approximation locks vA at this voltage for all greater values of vIN . A sketch
of the output voltage is shown below.

vA =




10V vIN < VT

10V − (5V−1)(vIN − 2V)2 VT < vIN < 3.318V
1.318V 3.318V < vIN
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(B) This circuit is the same as the one from Part (A), with vIN replaced by vA and vA replaced
by vO. We can reuse our answers from above and write:

vO =




10V vA < VT

10V − (5V−1)(vA − 2V)2 VT < vA < 3.318V
1.318V 3.318V < vA



Here’s the same graph from above, relabeled.
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(C) For M1 to be in saturation, 1.318V < vA < 10V. For M2 to be in saturation, 2V < vA <
3.318V. As long as M2 is operating in the saturation region, M1 will be as well (the restrictions
on vA are tighter for M2). We can use the formula we found in Part (A) to find that for this
range of vA, vIN must be:

3.156V < vIN < 3.265V

(D) Knowing that both MOSFETs operate in the saturation regime, we can combine the saturation
equations from Parts (A) and (B) above to arrive at:

vO = 10V − (5V−1)
(
10V − (5V−1)(vIN − 2V)2 − VT

)2

(E) The gain of this amplifier is the derivative of the above expression with respect to vIN evaluated
at the operating point VIN = 3.2V. This gives:

vo

vi
=

d

dvI

[
10V − (5V−1)

(
8V − (5V−1)(vIN − 2V)2

)2
]∣∣∣

vIN=3.2V

=
[
(10V−1)

(
8V − (5V−1)(vIN − 2V)2

)
(10V−1)(vIN − 2V)

]∣∣
vIN=3.2V

= 96

(F) The small signal circuit is shown below.

K(VIN-VT)vin 5kΩ K(VA-VT)va 5kΩvavin vo

+ + +
- - -

vin

From Part (A) we know that when vIN = 3.2V, vA = 2.8V. The small-signal output voltage,
vo is

vo = −va ∗
(
5kΩ ∗ 2mA

V2

)
(VA − VT )

=
(
5kΩ ∗ 2mA

V2

)
(VIN − VT ) ∗

(
5kΩ ∗ 2mA

V2

)
(VA − VT )

= 10 ∗ 10 ∗ 1.2 ∗ .8
= 96

Which is identical to the answer from Part (E).



Problem 6.2 Answer:

(A) The small signal model for the circuit is drawn below.

K1(VIN-EX-VT)(vin-ex) K2(-EX-VT)(-ex)

5kΩ

vo
+
-

K3(VIN-EX-VT)(0)

ex

vin

Notice that the small signal input voltage to M3 (the transistor on the bottom) is zero. That
means the small signal drain current is also zero (M3’s dependent source is an open circuit),
and the model can be redrawn as follows:

K(VIN-EX-VT)(vi-ex) K(-EX-VT)(-ex)

5kΩ

vo
+
-

ex

vi

(B) Modify the small-signal circuit as shown below.

K(VIN-EX-VT)(-ex) K(-EX-VT)(v’i-ex)

5kΩ

vo
+
-

ex

v’i

The small signal currents into the node ex must equal zero. So we know that

(2mA/V)(vi − ex) + (2mA/V)(−ex) = 0

Solving this equation for ex gives

ex =
vi

2

We can see that vo = −(10V−1)(−EX − VT )(−ex). Substituting values in and dividing by vi

gives
vo

vi
= 5



This is the same answer found in Problem 5.2.

(C) This is very similar to the derivation above. Modify the small-signal circuit as shown below.

K(VIN-EX-VT)(vi-ex) K(-EX-VT)(v’i-ex)

5kΩ

vo
+
-

ex

vi v’i

The small signal currents into the ex node must still equal zero, so

(2mA/V)(−ex) + (2mA/V)(v′i − ex) = 0

Solving this for ex gives

ex =
v′i
2

This time vo = −(10V−1)(−EX − VT )(v′i − ex). Thus, the small signal gain is

vo

v′i
= −5

(D) If both vi and v′i are applied simultaneously to the gates of M1 and M2, then:

(2mA/V)(vi − ex) + (2mA/V)(v′i − ex) = 0

We can see that

ex =
vi + v′i

2

Now vo = −(10V−1)(−EX − VT )(v′i − vi+v′
i

2 ). This can be rewritten as:

vo = 5(vi − v′i)

This amplifier only amplifies the difference between the two input signals, hence the name
“difference amplifier”.

Problem 6.3 Answer:

(a) Recall that capacitances in parallel add, and capacitances in series have reciprocals that add
(just like conductances). The two capacitors on the right form one capacitor with value (C3 +
C4). This is in series with C2 to become C2(C3+C4)

C2+C3+C4
. This is in parallel with C1, making the

total capacitance

Ctotal = C1 +
C2(C3 + C4)
C2 + C3 + C4



(b) Recall that inductances in series add, and inductors in parallel have reciprocals that add (just
like resistors). The two inductors on the right form on inductors with value (L3 +L4). This is
in parallel with L2 to become L2(L3+L4)

L2+L3+L4
. This is in series with L1, making the total inductance

Ltotal = L1 +
L2(L3 + L4)
L2 + L3 + L4

Problem 6.4 Answer:

(A) (a) Remember that the voltage across the capacitor is proportional to the amount of charge
on the capacitor. In zero time (from 0− → 0+) no charge can accumulate on the capacitor
(because there is not an infinite current in the circuit). Hence, the voltage across the
capacitor at t = 0+ must be the same as it was at t = 0−.

v(0+) = 0

To find v(∞), consider the way the current iS will divide into R3 and R2. At t = 0 there
is no voltage across the capacitor. As time goes on the capacitor voltage increases, and
more of iS splits into R2 than R3. Eventually, all of iS will flow through R2, the voltage
across the capacitor will equal the voltage across R2, which is

v(∞) = ISR2

Alternatively, consider the Thévenin equivalent circuit formed by iS , R1, and R2. The
Thévenin voltage is ISR2, and the Thévenin resistance is R2. Once v reaches the value of
the Thévenin voltage, no more current will flow in or out of the capacitor, and it’s voltage
will remain fixed at ISR2.

(b) Remember that the current through an inductor will be continuous unless there is an
infinite voltage applied across it (the magnetic flux is proportional to the integral of the
voltage applied across it over time). Because there is not an infinite voltage source in the
circuit, the current through the inductor must be continuous, so

i(0+) = i(0−) = 0

At t = ∞ the inductor will act like a short circuit. Consider the Thévenin circuit formed
by the voltage sources and resistors.

VTh =
R2

R1 + R2
V1 − R1

R1 + R2
V2

RTh =
R1R2

R1 + R2

If L acts like a short at t = ∞, the current i will be

i(∞) =
VTh

RTh
=

V1

R1
− V2

R2

(B) (a) The time constant is the capacitance times the equivalent resistance seen at the capacitor’s
terminals. This resistance is R2 + R3. The time constant is

τ = C(R2 + R3)



(b) The time constant here is the inductance divided by the equivalent resistance seen at its
terminals. This resistance is R1||R2. The time constant is

τ =
L(R1 + R2)

R1R2

(C) We know that the solution will be of the form

F + (I − F )e−
t
τ

where F is the final value of the circuit variable, I is the initial value, and τ is the time
constant.

Using the above:

v(t > 0) = ISR2

(
1− e

− t
C(R2+R3)

)

(a)(b) Again, we can write the expression directly as above

i(t > 0) =
(

V1

R1
− V2

R2

) (
1− e

− tR1R2
L(R1+R2)

)

(D) If v2(t) = V2 for all time, at t = 0− then, i = − V2
R2

. The final value i(∞) is, as before:

i(∞) =
V1

R1
− V2

R2

And the time constant is still the same. By inspection:

i(t > 0) =
V1

R1
− V2

R2
− V1

R1
e
− tR1R2

L(R1+R2)

(E) Consider the inductor to be a current source with value i as given above. We can use super-
position to find iR2 .

iR2 =
v1

R1 + R2
+

v2

R1 + R2
− i

R1

R1 + R2

Using the expression for i we found in Part (D) above, we find for t > 0

iR2 =
V1 + V2

R1 + R2
− R1

R1 + R2

(
V1

R1
− V2

R2
− V1

R1
e
− tR1R2

L(R1+R2)

)

=
V2 + R1

R2

R1 + R2
+

V1

R1 + R2
e
− tR1R2

L(R1+R2)



Problem 6.5 Answer:

(A) At t = 0, vIN switches to VS , and the first MOSFET turns into a resistor with value RON in
the SC model. The initial value of v1 = VS . The final value is VS

RON
R+RON

. The time constant
for the system is τ = Ceq

RONR
RON+R . Because RON << R, this expression reduces to τ = CeqRON .

By inspection, as in Problem 4, we can write

v1(0 < t < T/2) = VS
RON

R + RON
+

(
VS − VS

RON

R + RON

)
e
− t

CeqRON

Note that RCeq << T
2 , so RONCeq << RCeq << T

2 . This means that the capacitor will
discharge very quickly, and the transition in v1 is sharp.

t

v1

T/20

VS

VSRON

R+RON

(B) The Lo-Hi transition of the input happens at t = 0. We can find the time when v1 falls below
VOL by setting the expression found in Part (A) equal to VOL and solving for t. This gives

∆t = −CeqRON ln
(

VOL(RON + R)− VSRON

VSR

)

(C) This solution is similar to Part (A) and (B). At t = T
2 the first MOSFET turns off, and

the capacitor begins charging up to VS through the resistor R. The initial value of v1 is
v1(T/2) = VS

RON
RON+R . The final value is v1(T ) = VS , because RCeq << T

2 . The time constant
is now τ = RCeq. By inspection:

v1(T/2 < t < T ) = VS +
(

VS
RON

RON + R
− VS

)
e
− t−T

2
RCeq

Notice the t − T
2 term in the exponent. The input transition occurs at t = T

2 , so we must
time-shift the output expression by T

2 .

This is graphed below. Note that RONCeq << RCeq, so this transition happens slower than
the one in Parts (A) and (B).
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Again, set this expression equal to VOH and solve to find

t =
T

2
− CeqR ln

(
(VS − VOH)(RON + R)

VS

)

The time delay is the expression above minus T
2 , which is

∆t = −CeqR ln
(
(VS − VOH)(RON + R)

VS

)

(D) The switching speed of the buffer is reduced by lowering R, but two other important things
are increased. The low output voltage is VS

RON
R+RON

. If R is decreased, this is increased,
decreasing the low-end noise margin. Also, decreasing R increases the power dissipated when
the MOSFET is on.


