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Problem 7.1 Answer:

(A) To find the Thévenin equivalent resistance seen by CGD, replace the capacitor with a test
voltage and current and set the independent sources to zero, as shown in the figure below.
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We know that vgs2 = −iXRt. The voltage at the node labeled e is then −iXRt + vX . We can
write KCL at e:

iX = gmvgs2 +
e

R

Substituting values in and solving for vX
iX

gives

iX = gm(−iXRt) +
−iXRt + vX

R

iX

(

1 + gmRt +
Rt

R

)

=
vX

R
vX

iX
= R+Rt(gmR+ 1)

(B) The time constant associated with CGD is the capacitance multiplied by the Thévenin resis-
tance seen at it’s terminals. This value is

τ = CGD(R+Rt(gmR+ 1))

(C) Because there are no infinite currents in the circuit, the voltage across CGD must be continuous
at t = 0. This means that vgs2 = vout at t = 0+. We can write at t = 0+:

vt(0
+)− vout(0

+)

Rt
=

vout(0
+)

R
+ gmvout(0

+)

Solving this equation for vout gives

vout(0
+) =

vtR

Rt + gmRRt +R



Note that from Part (B), gmR >> 1, so the above expression reduces to

vout(0
+) =

vt

gmRt + 1

Eventually CGD will look like an open circuit, and vout will settle to vout = −gmvtR. By
inspection

vout(t) = −gmvtR+

(

vt

gmRt + 1
+ gmvtR

)

e
−

t
CGD(R+Rt(gmR+1))

This is graphed below.
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Problem 7.2 Answer:

(A) We know the initial and final values of v (0 and V0 respectively). The time constant is just
RC. Consequently

v = V0

(

1− e−
t

RC

)

(B) The final energy is

EC =
1

2
CV 2

0

The energy supplied by the voltage source is given by the following, where i is the current into
the capacitor

EV0 =

∫

∞

0

(V0 ∗ i(t))dt

Recognizing that i = V0−v
R

, and using the answer from Part (A) we can rewrite this integral as

EV0 =
V 2

0

R

∫

∞

0

(e−
t

RC )dt



This evaluates to

EV0 =
V 2

0

R
(RC)

(

−e−
∞

RC + e−
0

RC

)

= CV 2
O

There is a difference, only half of the energy supplied ended up in the capacitor. The other
half was dissipated by the resistor during the charging process.

(C) In this circuit, the time constant has changed. The two capacitors in series become CC1
C+C1

, so

τ = R
CC1

C + C1

When the switch closes, C1 will begin to charge C through R. The voltage across C1 can
be expressed as vC1 = V1 −

1
C1

∫ t

0
i(t)dt, and the voltage across C can be expressed as vC =

1
C

∫ t

0
i(t)dt. We know that i =

vC1
−vC
R

, so we can write out an expression for i as follows:

i(t) =
V1 −

1
C1

∫ t

0
i(t)dt− 1

C

∫ t

0
i(t)dt

R

The resulting differential equation can be solved to find that

i(t) =
V1

R
e−

t
τ

We could have written this expression by inspection, as we knew the initial and final values of
the current i. The final voltage on the capacitor C is then

v(∞) =
1

C

∫

∞

0

i(t)dt =
V1τ

R
= V1

C1

C + C1

A sketch of v(t) appears below.
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If the same energy is to end up in C, v(∞) must be equal for both circuits. This means

V1 = V0(1 +
C

C1
)



(D) The energy dissipated by the resistor this time is equal to

ER = R

∫

∞

0

i2(t)dt

=
V 2

1

R

∫

∞

0

e−
t
τ dt

=
V 2

1

R
τ
[

−e−
∞

τ + e−
0
τ

]

dt

=
V 2

1

R
τ

= V 2
OC

(

1 +
C

C1

)

More energy is dissipate here than in Part (A).

(E) At t = 0+ the current I0 splits into R and L. However, we know that the current through L

must be continuous unless there is a source of infinite voltage in the circuit, so initially all of
the current flows into R, producing a voltage RI0 across the inductor. This will cause current
to begin to flow into L with time constant τ = L

R
(remember that v = L di

dt
for an inductor).

Eventually, the inductor will carry all of the current I0. Given this information we can write

i(t) = I0

(

1− e−
tR
L

)

Let the variable v correspond to the voltage across the inductor. We know that the energy
supplied by the source will be equal to

ES = I0

∫

∞

0

v(t)dt

The energy dissipated by the resistor is

ER =

∫

∞

0

(I0 − i(t))v(t)dt

The energy stored by the inductor is

EL =

∫

∞

0

i(t)v(t)dt

We know that v(t) = R(I0 − i(t)) from Ohm’s law, and we have an expression for i(t) above.
Using this information we can evaluate these integrals and find

ES = LI2
0

ER =
1

2
LI2

0

EL =
1

2
LI2

0

Problem 7.3 Answer:



(A) (a) The general solution to the differential equation is

v(t) =
1

T
+Ae−

t
RC

The initial condition is that v(0) = 0. This means that the constant A in the above
expression is A = − 1

T
.

(b) This time the general solution is

v(t) = Be−
t−T
RC

At t = T , this expression must have the same value as the one from part (i) above. This
means that

B =
1

T
(1− e−

T
RC )

(c) We need to know limT→0 B. If we try to evaluate this directly we get 0
0
. We can use

L’Hopital’s rule to find

lim
T→0

B = lim
T→0

d
dT

(

1− e−
T
RC

)

d
dT

T

= lim
T→0

1

RC
e−

T
RC =

1

RC

The impulse response is then

v(t) =
1

RC
e−

t
RC

(B) Integrate the differential equation from t = 0− to t = 0+.

RC
dv(t)

dt
+ v(t) = vs(t)

∫ 0+

0−

[

RC
dv(t)

dt
+ v(t)

]

dt =

∫ 0+

0−
[vs(t)] dt

∫ 0+

0−
RC

dv(t)

dt
dt+

∫ 0+

0−
v(t)dt =

∫ 0+

0−
[vs(t)] dt

[RCv(t)]|0
+

0− + 0 = 1

RCv(0+) = 1

v(0+) =
1

RC

Which is the same answer we got from Part (Aiii) above. The impulse response is then

v(t) =
1

RC
e−

t
RC



(C) We know that v(0+) = 1
C

∫ 0+

0−
icdt. So

v(0+) =
1

C

∫ 0+

0−
icdt

=
1

C

∫ 0+

0−

δ(t)

R
dt

=
1

RC

Which is the same answer we got from Part (B).

(D) We’ve found the step response of a simple resistor-capacitor network many times. We know
that it is

v(t) = 1− e−
t

RC

To find the impulse response, differentiate this to find

v(t) =
1

RC
e−

t
RC

Which is the same answer we’ve been getting all along.

Problem 7.4 Answer:

(A) The capacitor is initially charged to the unknown voltage V0. At t = 0 an impulse of current
with area Q Coulombs is applied to the capacitor. This means that at t = 0+ the capacitor
voltage will be V0 + Q

C
. You can verify this from the results of Problem 3 above, replacing

the Thévenin voltage source with its Norton equivalent from this problem. Until t = T , this
voltage will decay to 0 with time constant τ = RC. For 0 < t < T , then, v(t) is

v(t) =

(

V0 +
Q

C

)

e−
t

RC

(B) Evaluate the expression from Part (A) at t = T−, equate it to V0, and solve:

V0 =

(

V0 +
Q

C

)

e−
T
RC

V0

(

1− e−
T
RC

)

=
Q

C
e−

T
RC

VO =
Q
C
e−

T
RC

1− e−
T
RC

If RC << T then V0 ≈ 0. The capacitor will discharge almost all the way between each
impulse. The response will look like many impulse responses chained together, as shown below
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If RC >> T , then V0 ≈ ∞. Take the Taylor series expansion of VO and discard all but the
first two terms. This is

VO =
Q
C

(

1− T
RC

)

1−
(

1− T
RC

) =
RQ

T

We can see that V0 will approach ∞ as 1
T
. Physically, the capacitor will not discharge much

at all between impulses, and the output will look fairly constant (at a high voltage), as shown
below.
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(C) Recall that the solution to a first-order linear differential equation is always a particular solution
plus a homogeneous solution. We’ve already found the particular solution for the circuit in the
parts above, it’s just v∗(t). All we need is the homogeneous solution, which we know is of the
form

v1(t) = Ae−
t

RC

All we need to find is the multiplying constant A to satisfy the initial conditions. Evaluating
v∗(t) at t = 0− gives V0. Remember that at t = 0− the impulse has not been applied to the
circuit yet, so the value of v∗(t) = V0. We can write

0 = v(0−) = v∗(0−) + v1(0
−)

0 = V0 +A

A = −V0

We have, finally:

v1(t) = −V0e
−

t
RC


