MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer Science
6.002 - Electronic Circuits
 Fall 2002

Problem Set 8

Issued: October 23, 2002
Due: October 30, 2002

Reading Assignment:

- A\&L Section 13.1 for Tuesday, October 29.

Problem 8.1: \quad Find the corresponding $v(t)$ in the network shown in Figure 1 for each of the input waveforms $v_{S}(t)$ illustrated in Figure 2. Assume the network has zero state for $t<0$.

You may wish to take advantage of the following properties of LCCODE's, where x is the excitation, y the response, and there is no initial state.

$$
\begin{aligned}
\text { If } x & \rightarrow y \text { then: } \\
\int_{-\infty}^{t} x d t^{\prime} & \rightarrow \int_{-\infty}^{t} y d t^{\prime} \\
x(t-T) & \rightarrow y(t-T) \\
a x & \rightarrow a y
\end{aligned}
$$

If $\quad x_{1} \rightarrow y_{1} \quad$ and $\quad x_{2} \rightarrow y_{2} \quad$ then:
$x_{1}+x_{2} \rightarrow y_{1}+y_{2}$

Figure 1: Circuit for Problem 8.1

Figure 2: Inputs for Problem 8.1

Problem 8.2: Consider the buffer circuit from Problem 6.5, whose circuit is reproduced in Figure 3.

Figure 3: Circuit for Problem 8.2

In Problem 6.5, you solved for the voltage v_{1} across the gate-to-source terminals of $M 2$ with a square-wave input and where $C_{e q}$ represents the equivalent gate-to-source capacitor of $M 2$. The solution for v_{1} over the first period is:

$$
v_{1}(t)= \begin{cases}\frac{R_{O N}}{R_{O N}+R} V_{S}+\frac{R}{R_{O N}+R} V_{S} e^{-t / \tau_{1}} & 0<t<T / 2 \\ V_{S}-\frac{R}{R_{O N}+R} V_{S} e^{-(t-T / 2) / \tau_{2}} & T / 2<t<T\end{cases}
$$

where $\tau_{1}=\left(R \| R_{O N}\right) C_{e q}, \tau_{2}=R C_{e q}$ and we've assumed that $\tau_{1} \ll T$ and $\tau_{2} \ll T$. The input square wave and v_{1} are sketched in Figure 4.

Figure 4: Input for Problem 8.2
(A) Use the above expressions to calculate the total energy dissipated in $M 1$ and the pull-up resistor R during the first half period.
(B) Repeat (A) during the second half period.
(C) Using the results of (A) and (B), calculate the time averaged power dissipated in $M 1$ and the pull-up resistor. Identify the terms corresponding to static and dynamic power.
(D) Let $R=100 k \Omega, R_{O N}=10 k \Omega, V_{S}=5 V, C_{e q}=10^{-2} p F$ and $T=10^{-8} s$. Evaluate the result found in (C). Which term dominates, the static or dynamic power?

Problem 8.3: \quad Do exercise 4 on page 778 in A\&L.

Problem 8.4: Consider again the Boolean expressions from Problem 4.2 that you implemented using NMOS logic and pull-up resistors:
(A) $A+\bar{B}+\bar{C}$
(B) $A B \bar{C}$
(C) $A B+C$

Draw circuit diagrams that implement each of these logical functions using CMOS logic.

Problem 8.5: Consider the logic circuit illustrated in Figure 5. Model each of the MOSFETs with the SR model and assume that $M 4$ has a gate-to-source capacitance $C_{G S}$. Assume that all MOSFETs have the same $R_{O N} \ll R$. Assume further that the inputs cycle through each of the eight possible states $A B C$ in the order $000,001,010,011,100,101,110,111$ dwelling in each state for time $T \gg R C_{G S}$. Determine the average power dissipated in this circuit over the time required for a complete input cycle.

Figure 5: Circuit for Problem 8.5

