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Problem 9.1 Answer:

(A) Notice that this is a series RLC circuit which is under-damped
(

R
2 <

√
L
C

)
. The un-driven

(homogeneous) solution is solved in the course notes, and will not be repeated here. Because
L
R << T we can assume that vO will decay to a final constant state within the time T .

We know that before t = 0 the MOSFET is off so vO(0+) = VS . When the MOSFET turns on
vO will ring down towards VS

RON
RON+Rpu

. Let us make the assumption that RON << Rpu, this
means the response for 0 < t < T will just be the un-driven response analyzed in the notes,
with iL(0) = 0 and vC(0) = VS .

For our purposes, let α = R
2L and ωd =

√
1

LC − α2. From the notes we can directly write

vO(0 < t < T ) = VS

√
1 +

(
α

ωd

)2

e−αt cos
(

ωdt − tan−1

(
α

ωd

))

As we’ve seen in class, this is a decaying exponential oscillatory response. The R used to
calculate α is the parallel combination of RON and Rpu.

For T < t < 2T the answer is nearly identical. The difference is that the particular solutions
is now VS rather than 0. If we look closely at the problem, though, we can easily adjust the
above solution without having to do too much work. In the notes, the constants A1 and A2 are
found by evaluating vC(0) and

dvC(0)
dt and setting them equal to their initial conditions. The

derivative equation doesn’t change, because the constant particular solution just disappears.
Look carefully at the first equation though. From the notes the homogeneous response gives
us

vO(0) = A1 + A2 = VS

In the driven case, though, we get

vO(0) = A1 + A2 + VS = 0

Notice the we can re-arrange the second equation to be

vO(0) = A1 + A2 = −VS

This isn’t a big change from the homogeneous solution at all! What does this affect? Because
dvO
dt = 0, the only thing that this changes is the sign of A1 and A2 from the homogeneous



solution. We can find vO(T < t < 2T ) then be subtracting the homogeneous solution we found
above from the particular solutions. This gives

vO(T < t < 2T ) = VS


1−

√
1 +

(
α

ωd

)2

e−αt cos
(

ωdt − tan−1

(
α

ωd

))


Does this answer make sense? Yes! The derivative is still zero, meaning that the inductor
current will be zero. The value of it at t = 0 is zero, which means the capacitor voltage is
continuous, and it’s a decaying exponential with a final value of VS , which we expected. Note
that this time the R used to calculate α is just Rpu, because the MOSFET is off. This means
that α is bigger during the second half of a switching cycle, leading to a faster decay, and
smaller ωd (frequency) for the oscillations. Below is a graph of vO(t) for 0 < t < 2T .
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(B) We know that once the output of the circuit becomes a valid high output for a valid low input,
it should not leave the valid high output region. This means that the lowest ringing trough
when the output switches high must be > 0.8VS .

To make the work easier, we can re-write the expression for vO as

vO(T < t < 2T ) = VS

(
1− e−αt

(
cos(ωdt) +

α

ωd
sin(ωdt)

))

The troughs (and peaks) occur when dvO(t)
dt = 0. Let’s evaluate the derivative:

dvO(T < t < 2T )
dt

= αe−αt cos(ωdt) + ωde
−αt sin(ωdt) +

α2

ωd
e−αt sin(ωdt)− αe−αt cos(ωdt)

The cos terms cancel each other, and we are left with

dvO(T < t < 2T )
dt

= e−αtωd

(
sin(ωdt) +

(
α

ωd

)2

sin(ωdt)

)



The only time when this expression is equal to zero is when ωdt is some integer multiple of π.
We are interested in the point where ωdt = 2π, the first trough. Note that ωdt = π corresponds
to the first peak, and ωdt = 0 corresponds to the initial switch.

Using ωdt = 2π in the modified expression for vO above, the sin term is 0 and the cos term is
1, and we are left with

v0

(
2π
ωd

)
= VS(1− e−αt)

Setting this expression equal to 0.8VS , substituting in expressions for α and ωd and solving for
L gives

0.8VS = VS


1− e

− 2Rπ

2L

√
1

LC
−( R

2L)
2




0.2 = 0.e
− 2Rπ

2L

√
1

LC
−( R

2L)
2

ln(5) =
Rπ

L

√
1

LC − (
R
2L

)2

L

√
1

LC
−

(
R

2L

)2

=
Rπ

ln(5)

L2

(
1

LC
−

(
R

2L

)2
)

=
R2π2

ln2(5)

L

C
−

(
R

2

)2

=
R2π2

ln2(5)

L = CR2

(
π2

ln2(5)
+

1
4

)

Evaluating this with the circuit parameters given yields

L ≈ 40.602nH



Problem 9.2 Answer:

(A) Start from the right side of the circuit, and work back towards the source. The current that
flows through R2 (towards the right) is equal to the current through the resistor R1 and the
current into the capacitor C1. Call this current i2. It is

i2 =
vC1

R1
+ C1

dvC1

dt

Likewise, the source current is equal to the current through R2 and C2. This is

is = C2
dvC2

dt
+ i2

However, we have an expression for i2 in terms of vC1 above. We can also say

vC2 = vC1 + R2i2

Using this information, we can write out the differential equation in terms of vC1 .

is = C2
dvC2

dt
+ i2

is = C2
d

dt
[vC1 + R2i2] + i2

is = C2
d

dt

[
vC1 + R2

(
vC1

R1
+ C1

dvC1

dt

)]
+

vC1

R1
+ C1

dvC1

dt

is = C2
d

dt

[
vC1

(
1 +

R2

R1

)
+ R2C1

dvC1

dt

]
+

vC1

R1
+ C1

dvC1

dt

is = C2

(
1 +

R2

R1

)
dvC1

dt
+ C1R2C2

d2vC1

dt2
+

vC1

R1
+ C1

dvC1

dt

is = C1R2C2
d2vC1

dt2
+

(
C1 + C2 +

R2C2

R1

)
dvC1

dt
+

vC1

R1

is
C1R2C2

=
d2vC1

dt2
+

(
1

R2C2
+

1
R2C1

+
1

R1C1

)
dvC1

dt
+

vC1

R1C1R2C2

(B) (i) Using the values given in the problem statement, the differential equation becomes

3is =
d2vC1

dt2
+ 4

dvC1

dt
+ 3vC1

The characteristic equation is

s2 + 4s + 3 = (s + 3)(s + 1) = 0

It’s roots are

s = −1 and s = −3

(ii) We know that the most general form of the homogeneous solution will be a linear combi-
nation of exponentials with natural frequencies from Part (i):

vC1(t) = Ae−t + Be−3t



(iii) The input to our system is a constant, so we can suppose that the particular solution will
be a constant, C, too. Let’s substitute this into the differential equation, and we find

C = is

Note that C is in volts. Go back to the differential equation from Part (A) and note that
if vC1 = C then

is =
C

R1

Because R1 = 1Ω the particular solution is just isV.

(iv) The input is a step of current. From t = 0− to t = 0+ no charge is injected into the circuit(∫ 0+

0− isdt = 0
)
. This means that the capacitor voltage must be continuous at t = 0. The

derivative of the capacitor voltage is proportional to the current flowing into it. At t = 0+,
though, C2 will act like a short, and all of is will flow into it momentarily, so dvC1

dt

∣∣∣
0+

= 0.

(v) The total answer is the particular solution from Part (iii) plus the homogeneous solution
from part (ii). The constants A and B are used to satisfy the initial conditions from Part
(iv). The general solution is

vC1 = is + Ae−t + Be−3t

Evaluate this and it’s derivative at zero in order to find A and B to satisfy the initial
conditions. This gives

−is = A + B and 0 = A + 3B

Solve these this system of linear equations to find

A = −3is
2

and B =
is
2

Putting all of this together we find

vC1 = is

(
1− 3

2
e−t +

1
2
e−3t

)

Note that this is the solution for t > 0. If we were asked for the solution for all t, we
would have multiplied the above answer by u−1(t) to reflect the fact that the circuit is in
zero state for t < 0.



Problem 9.3 Answer:

(A) While the switch is in position B there is a short across the inductor, and all of IS flows into
C. The inductor current will remain at zero, and the capacitor voltage will increase linearly
with time as vC = 1

C ISt. This is sketched below.
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(B) We have already examined this problem in class. IS has a short across it, and we’re left with
a parallel LC circuit with an initial state. We can directly write

vC(t) =
IST

C
cos

(
t − T√

LC

)

We know that iL = −iC = −C dvC
dt .

iL(t) =
IST√
LC

sin
(

t − T√
LC

)

When the capacitor voltage is zero, cos
(

T1−T√
LC

)
= 0. This means sin

(
T1−T√

LC

)
= 1, so the

inductor current is iL(T1) = IST√
LC

. These waveforms are graphed below.
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(C) Again, there is a short across the inductor. This means the voltage across the inductor is zero,
so it’s current won’t change at all. It will remain at iL(T1) = IST√

LC
. The capacitor voltage will

charge linearly again, so vC(t) = 1
C IS(t − T1).
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(D) This time finding vC and iL is a little more complicated, because the initial conditions aren’t
quite as simple. However, we know the solution is going to be the sum of some sinusoids at
the resonant frequency. We can guess

vC(t) = A cos
(

t − T1 − T√
LC

)
+ B sin

(
t − T1 − T√

LC

)

We know that vC(T1 + T ) = IST
C . The sin term above is zero at t = T1 + T , so A = IST

C .
Likewise, we know that the current out of the capacitor at t = T + 1 + T must equal the
inductor current, so −C dvC

dt = IST√
LC

. This means

−C
dvC

dt
=

IST√
LC

=
IST√
LC

sin
(

t − T1 − T√
LC

)
+−C

B√
LC

cos
(

t − T1 − T√
LC

)

Note that only the cos term is non-zero at t = T1 + T . Solving for B gives B = − IST
C .

Now we have

vC(t) =
IST

C

[
cos

(
t − T1 − T√

LC

)
− sin

(
t − T1 − T√

LC

)]

and we can find iL = −C dvC
dt

iL(t) =
IST√
LC

[
sin

(
t − T1 − T√

LC

)
+ cos

(
t − T1 − T√

LC

)]

The capacitor voltage will be zero when

cos
(

T2 − T1 − T√
LC

)
= sin

(
T2 − T1 − T√

LC

)

This means that T2−T1−T√
LC

= π
4 . Solving this for T2 gives T2 = T + T1 + π

√
LC
4 . We can find

iL(T2) = IST
√

2√
LC

. This is all graphed below.
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(E) Here is a sketch of vC(t) and iL(t) for 0 < t < T2.
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Problem 9.4 Answer:

(A) We already know that the voltage across the capacitor at t = T is vC = IST
C . The energy in

the capacitor is

EC =
1
2

I2
ST 2

C

(B) We know that EC = EL. So to find IL:

EL = EC

Li2L =
I2
ST 2

C

i2L =
I2
ST 2

LC

iL =
IST√
LC

Which is the same answer we got in 9.3(B).

(C) Again, the energy stored in the capacitor is just

EC =
1
2

I2
ST 2

C

(D) This time, the final energy in the inductor needs to be equal to I2
ST 2

C , because 1
2

I2
ST 2

C has been
put into it twice.

EL = 2EC

Li2L =
I2
ST 22
C

i2L =
2I2

ST 22
LC

iL =
IST

√
2√

LC

which is the same answer we got in 9.3(D).

(E) After the nth cycle, we will have dumped n ∗ I2
ST 2

2C Joules into the inductor. We can find the
inductor current as

EL = nEC

Li2L =
I2
ST 2n

C

i2L =
2I2

ST 2n

LC

iL =
IST

√
n√

LC


