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worksheet. Answers must be derived or explained, not just simply written down. The quiz
is closed book, but calculators are allowed.
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Name: 2

Problem 1: (30 points) This problem examines the transient response of the circuit shown below.
In the circuit, iL = 0 at t = 0−.

(A) (10 points) Determine an expression for iL due to iS = ISu(t); that is, for ΛS = 0.

Since ΛS = 0, we replace the voltage source vS with a short. Recognizing that this is a first
order LR circuit, we need to find: 1. iL(0+), 2. iL(t → ∞) and 3. τ = L/Req, where Req is
the Thévenin equivalent resistance seen from the terminals of the inductor L.

1. To find iL(0+), we recall that an inductor with iL(0−) = 0 acts as an open at t = 0+. Thus,
the current from the source goes through the two resistors and iL(0+) = 0.

2. To find iL(t → ∞), we recall that an inductor acts as a short at t → ∞. Thus, all the
current from the source goes through the inductor and iL(t → ∞) = IS.

3. To find τ = L/Req, we turn off iS by replacing it with an open. We then find that the
Thévenin equivalent resistance seen from the terminals of the inductor L is the two resistors
R in parallel, so that Req = R/2. Therefore, τ = 2L/R.

We can construct the answer using the results 1, 2, and 3:

iS(t) =

{
IS(1− e−t/τ ); τ = 2L/R t ≥ 0
0 t < 0
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(B) (10 points) Determine an expression for iL due to vS = ΛSδ(t − T ); that is, for IS = 0.

Since IS = 0, we replace the current source iS with an open. Since this is a linear system, the
answer to an input shifted to t = T is the answer to that same input at t = 0 shifted to t = T .
Thus, we need to find the response to vS = ΛSδ(t) and shift the answer to t = T .

Again, recognizing that this is a first order LR circuit, we need to find: 1. iL(0+) and
2. iL(t → ∞). The time constant τ is the same independent of the inputs to the circuit;
thus, it is as that found in part (A), τ = 2L/R.

1. To find iL(0+), we recall that an inductor with iL(0−) = 0 acts as an open at t = 0+. The
voltage flux ΛS divides equally across the two resistors R and appears across the open terminals
of the inductor as ΛS/2. This flux generates a current instantly according to ΛL = LiL. Thus,
iL(0+) = ΛL/L = ΛS

2L .

2. To find iL(t → ∞), we recall that an inductor acts as a short at t → ∞. Thus, the current
through the inductor is iL(t → ∞) = vS(t → ∞)/R. Since vS is an impulse, vS(t → ∞) = 0,
and iL(t → ∞) = vS(t → ∞)/R = 0.

We can construct the answer combining the results 1 and 2, and shifting the response to t = T :

iS(t) =

{
ΛS
2L e−(t−T )/τ ; τ = 2L/R t > T

0 t < T

Alternatively, we can compute the step response and differentiate it to get the impulse response:[
ΛS

VS

d

dt

]
VSu(t − T ) = ΛSδ(t − T )

[
ΛS

VS

d

dt

]
VS

R
(1− e−(t−T )/τ ) =

ΛS

R
eT/τ 1

τ
e−t/τ =

ΛS

2L
e−(t−T )/τ

(C) (10 points) Determine an expression for iL due to iS and vS together.

Applying superposition, the response is the sum of the responses found in parts (A) and (B):

iS(t) =




IS(1− e−t/τ ) + ΛS
2L e−(t−T )/τ ; τ = 2L/R t > T

IS(1− e−t/τ ); τ = 2L/R 0 ≤ t < T

0 t < 0
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Problem 2: (30 points) In the circuit below, ω0 ≡ 1/
√

LC, vC(0−) = 0, and iL(0−) = 0.

(A) (15 points) Determine an expression for vC(t) for t > 0. If you determine vC(t) by inspection,
state your reasoning clearly.

The input is a sum of two steps, which can be written as vS(t) = VSu(t) + VSu(t − π/ω0).
Using linearity, we can express the solution as vC(t) = v′C(t) + v′C(t − π/ω0), where v′C(t) is
the response of the circuit to vS(t) = VSu(t).

At t = 0+, L is open and C is shorted. Thus, iL(0+) = 0, and v′C(0
+) = 0. Also,

v̇′C(0
+) = iL(0+)/C = 0. The particular solution is v′C(t) = VS . Since the system is

undamped, the general solution takes the form

v′C(t) = A cosω0t+B sinω0t+ VS

Applying the initial conditions,

v′C(t) = VS(1− cosω0t)

Thus, this is the solution for 0 ≤ t ≤ π/ω0. For t > π/ω0, we need to add v′C(t− π/ω0) to our
original v′C(t),

v′C(t) + v′C(t − π/ω0) = VS(1− cosω0t) + VS [1− cosω0(t − π/ω0)]

= VS(1− cosω0t) + VS(1 + cosω0t) = 2VS

Combining these results,

vC(t) =

{
VS(1− cosω0t) 0 ≤ t ≤ π/ω0

2VS t > π/ω0
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(B) (15 points) Sketch and dimension vC(t) for t > 0.
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Problem 3: (40 points) All circuits below operate in the sinusoidal steady state. For each circuit,
determine the input impedance Z(jω), the specified transfer function H(jω), and the parameters
Vo and φ which define vO(t) ≡ Vo cos(ωt+ φ), where Vo is a real, positive number.

(A) (10 points)

vI(t) = Vi cos(ωt)

Z(jω) = Vi

Îi
= R + Ljω

H(jω) = V̂o

Vi
= Ljω

R+Ljω =
j L

Rω

1+j L
Rω

Vo = Lω√
R2+(Lω)2

Vi

φ = π/2 − tan−1 Lω
R = tan−1 R

Lω
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(B) (15 points)

iI(t) = Ii cos(ωt)

Z(jω) = V̂i

Ii
= R||( 1

Cjω + 1
Cjω) = 2R

RCjω+2

H(jω) = V̂o

Ii
= V̂o

V̂i

V̂i

Ii
= V̂o

V̂i
Z(jω) =

1
Cjω

1
Cjω+

1
Cjω

Zjω = 1
2Z(jω) = R

RCjω+2

Vo = R√
4+(RCω)2

Ii

φ = − tan−1 RCω
2
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(C) (15 points)

vI(t) = Vi cos(ωt)

Z(jω) = Vi

Îi
= R + Ljω|| 1

Cjω = R + Ljω
1−LCω2

= R
(
1 +

1
RC jω
1

LC−ω2

)
= R

(
1

LC−ω2+ 1
RC jω

1
LC−ω2

)

H(jω) = V̂o

Vi
= R

R+Ljω|| 1
Cjω

= R−RLCω2

R−RLCω2+Ljω =
1

LC−ω2

1
LC−ω2+ 1

RC jω

Vo = |R−RLCω2|√
(R−RLCω2)2+(Lω)2

Vi

φ = − tan−1 Lω
R−RLCω2 + tan−1( 0

R−RLCω2)

= − tan−1 Lω
R−RLCω2+

{
0 ω < 1/

√
LC

π ω > 1/
√

LC

Note:
Since tan−1 is a multi-valued function, its range needs to be specified in order to define a unique
solution within a factor of 2nπ. One way to do this is to explicitly spell out the numerator and
denominator in the argument, a procedure that then defines the angle to be between 0 and 2π
or −π to +π. This is the approach taken in lecture and in Appendix C of the notes, and leads
to the result given here. Another way is to specify that tan−1 lies between −π/2 and π/2 and
add π when the angle moves out of this range. In any case, tan−1 must be clearly defined and
that was worth 1 point for this part of the problem.


