Exercise 6.1:

(a) Set the small-signal source to zero and replace the MOSFET with the SCS model:

\[V_O = V_S - \text{(voltage drop across } R_L) \]
\[V_O = V_S - \text{(current through } R_L) \cdot R_L \]
\[V_O = V_S - \frac{K R_L}{2} \left(V_{GS} - V_T \right)^2 \]

(b) Draw the small-signal model:
Solve for \(\frac{v_o}{v_i} \):

\[
v_o = 0V - \text{(voltage drop across } R_L)\]

\[
v_o = (\text{current through } R_L) \cdot R_L
\]

\[
v_o = -R_L \cdot K(V_{GS} - V_T) v_i
\]

\[
\frac{v_o}{v_i} = -K(V_{GS} - V_T) \cdot R_L
\]

(c)

Exercise 6.2:

Replace the MOSFET with its small-signal equivalent:

\[
\begin{align*}
G & \quad D \\
S & \quad S \\
\rightarrow & \quad \downarrow \\
G & \quad K(V_{GS} - V_T) v_{gs}
\end{align*}
\]
\(v_{gs} = v_{ds} \), so current through the device is proportional to the voltage across the device, so it looks like a resistor:

\[
\begin{align*}
K(V_{DS} - V_T) \\
(\text{conductance})
\end{align*}
\]

Exercise 6.3:

(a) TYPO IN BOOK: “...operating-point voltage of \(v_I \)” should read “...operating-point voltage of \(V_I \)”

Replace the MOSFET with the SCS model:

\[
i_{DS} = \alpha(v_{GS} - V_T)^3 = \alpha(v_I - V_T)^3
\]

Solve for \(v_O \):

\[
v_O = V_S - (\text{voltage drop across resistor})
\]

\[
v_O = V_S - (\text{current through resistor}) \cdot R_L
\]

\[
v_O = V_S - \alpha(v_I - V_T)^3 R_L
\]

Operating point:

\[
\begin{align*}
V_O &= V_S - \alpha(V_I - V_T)^3 R_L \\
I_{DS} &= \alpha(V_I - V_T)^3
\end{align*}
\]

(b) \(v_o \) = \[\frac{dv_O}{dv_I}\] \(v_i \)

\[
v_o = -3\alpha(V_I - V_T)^2 R_L v_i,
\]

Gain = \(\frac{v_o}{v_i} = -3\alpha(V_I - V_T)^2 R_L \)
(c) Let g_m be the small-signal transconductance of the MOSFET. The small-signal circuit is:

\[\text{where } g_m v_i = \frac{d}{d \vgs} \left| \begin{array}{c} \vgs = \vi \\ i = 3 \alpha (V_I - V_T)^2 \end{array} \right. \]

(d) Small-signal gain = $\frac{v_o}{v_i}$

- $v_o = 0V -$ (voltage drop across R_L)
- $v_o = -(\text{current through } R_L) \cdot R_L$
- $v_o = -g_m v_i \cdot R_L$

\[\frac{v_o}{v_i} = - g_m R_L, \text{ where } g_m = 3 \alpha (V_I - V_T)^2 \]

(e) R_L is proportional to the small-signal gain, so doubling R_L will double the gain.

Change in output bias voltage:

\[\frac{V_S - \alpha (V_I - V_T)^2 (2R_L)}{V_S - \alpha (V_I - V_T)^3 R_L} \]

\text{new output bias} \quad \text{old output bias}

\[\text{Change in output bias} = - \alpha (V_I - V_T)^3 R_L \]

(f) Since gain is proportional to $(V_I - V_T)^2$, increasing $(V_I - V_T)$ by a factor of $\sqrt{2}$ will double the gain. The required change in V_I depends on its relationship with V_T:

\[\frac{N V_I - V_T}{V_I - V_T} = \sqrt{2} \]

\[N V_I = \sqrt{2} V_I + (1 - \sqrt{2}) V_T \]

\[N = \frac{\text{factor change in } V_I}{\frac{V_T}{V_I}} = \sqrt{2} + (1 - \sqrt{2}) \frac{V_T}{V_I} \]
Change in output bias:

\[V_S - \alpha(\sqrt{2}(V_I - V_T))R_L - [V_S - \alpha(V_I - V_T)R_L] \]

new output bias \hspace{1cm} old output bias

\[= -(\sqrt{2})^3\alpha(V_I - V_T)R_L + \alpha(V_I - V_T)R_L \]

Change in output bias \(= (1 - 2\sqrt{2})\alpha(V_I - V_T)R_L \approx 1.8 \) times the change in part (e)

Problem 6.1:

(a) \(i_P = 10^{-5}\left(\frac{\text{MHOs}}{V^2}\right)(v_{PC} + 5v_{GC})^3 \)

\(i_P = 10^{-5}\left(\frac{\text{MHOs}}{V^2}\right)(15\text{V} - 7.5\text{V})^3 \)

\(i_P = 10^{-5}\left(\frac{\text{MHOs}}{V^2}\right)(7.5^3)\text{V}^3 \)

\(i_P = 10^{-5}(7.5^3)\text{Amps} \)

\(i_P \approx 4.2 \text{ mA} \)

(b) We know from part (a) that the current through \(R \) is 4.2 mA. The voltage across \(R \) is \(30\text{V} - v_{PC} \). Thus, \(R \) must be \(\frac{30\text{V} - v_{PC}}{4.2 \text{ mA}} \).

\[R = \frac{30\text{V} - 15\text{V}}{4.2 \text{ mA}} = \frac{15\text{V}}{4.2 \text{ mA}} \]

\(R \approx 3.56 \text{ k\Omega} \)

(c) From the problem definition:

\(i_P = 10^{-5}\left(\frac{\text{MHOs}}{V^2}\right)(v_{PC} + 5v_{GC})^3 \)

The change in \(i_P \) when \(v_{GC} \) varies around an operating point \(V_{GC} \), \(V_{PC} \) is described by the partial derivative of \(i_P \) with respect to \(v_{GC} \) at the operating point:

\[\left. \frac{\partial i_P}{\partial v_{GC}} \right|_{v_{GC} = V_{GC}, v_{PC} = V_{PC}} = \frac{15 \cdot 10^{-5}\left(\frac{\text{MHOs}}{V^2}\right)(V_{PC} + 5V_{GC})^2v_{GC}}{v_{GC} = V_{GC}, v_{PC} = V_{PC}} \]
The change in i_p when v_{PC} varies around an operating point V_{GC}, V_{PC} is described by the partial derivative of i_p with respect to v_{PC} at the operating point:

$$
\frac{i_p}{v_{pc}} = \frac{\partial i_p}{\partial v_{pc}}_{v_{gc} = V_{GC}, v_{pc} = V_{PC}}
$$

$$
i_p = 3 \cdot 10^{-5} \left(\frac{\text{MHOs}}{V^2} \right) (V_{PC} + 5 V_{GC})^2 v_{pc}
$$

The total current i_p is therefore the sum of the two partial currents:

- **left current source value:**
 $$15 \cdot 10^{-5} \left(\frac{\text{MHOs}}{V^2} \right) (V_{PC} + 5 V_{GC})^2 v_{gc}$$

- **right current source value:**
 $$3 \cdot 10^{-5} \left(\frac{\text{MHOs}}{V^2} \right) (V_{PC} + 5 V_{GC})^2 v_{pc}$$

Notice that the right-hand current source’s value is directly proportional to the voltage across the source. Therefore, that dependent current source can be modeled by a resistor:

- **current source value:**
 $$15 \cdot 10^{-5} \left(\frac{\text{MHOs}}{V^2} \right) (V_{PC} + 5 V_{GC})^2 v_{gc}$$

- **resistor value:**
 $$\frac{1}{3 \cdot 10^{-5} \left(\frac{\text{MHOs}}{V^2} \right) (V_{PC} + 5 V_{GC})^2} = \frac{10^5 \cdot V^2 \cdot \Omega}{3(V_{PC} + 5 V_{GC})^2}$$

Substituting in the numerical values for V_{PC} and V_{GC}:
Visually, the conductance value of the resistor can be determined by looking at the slope of the i_P-v_{PC} curve (selected by V_{GC}) at the operating point (V_{PC}, I_P). The conductance value of the dependent current source can be determined by visualizing how much i_P bounces up and down to neighboring i_P-v_{PC} curves as v_{GC} changes (with v_{PC} held constant).

Note that the device could alternately be modeled by a dependent voltage source in series with a resistor (derivation omitted):

\[
G \quad + \quad \frac{4}{3} \frac{k\Omega}{v_{PC}} \quad v_{PC} \quad - \quad v_{GC} \quad - \quad v_{GC} \quad + \quad P \quad C
\]

(d) Substitute in the model from part (c), replace the constant voltage supply with a short (because constant voltage supplies belong in the large-signal model of the circuit), and you get:

\[
8k\Omega \quad + \quad \frac{4}{3} \frac{k\Omega}{15} \quad v_{GC} \quad \frac{4}{15} \frac{k\Omega}{3} \quad v_{PC} \quad v_{GC}
\]
(e) Note that the two resistors in the small-signal model form a current divider.

\[
v_{pc} = 0V - \text{(voltage drop across the 8k}\Omega\text{ resistor)}
\]

\[
v_{pc} = - (\text{current through 8k}\Omega\text{ resistor}) \cdot 8k\Omega
\]

\[
v_{pc} = - \left(\frac{4}{3}k\Omega \cdot \frac{v_{gc}}{24k\Omega + \frac{4}{3}k\Omega + \frac{4}{15}k\Omega} \right) \cdot 8k\Omega
\]

\[
v_{pc} = -\frac{8 \cdot 15}{28} \cdot v_{gc} = -\frac{30}{7} \cdot v_{gc}
\]

\[
A_v = \frac{v_{pc}}{v_{gc}} = -\frac{30}{7}
\]

Problem 6.2:

(a) Alternately, the dependent current source on the right could be replaced by a resistor and dependent current source in parallel:

The resistor and dependent current source in parallel could alternately be modeled by a Thévenin equivalent (a voltage source dependent on \(v_m\) in series with a resistor—not shown).
To find R_{TH}, turn off all independent sources and measure the resistance. Because $v_{in} = 0$, $v_m = 0$. Thus, the small-signal current through MOSFET \(\text{②} \) (which corresponds to the right-hand dependent current source in the small-signal model) becomes $-g_{m2}v_{out}$. Because this current is proportional to the voltage across it, that dependent current source can be modeled by a resistor with conductance g_{m2}:

The resistance seen from a, a’ is therefore:

$$R_{TH} = \frac{R_2 \cdot \frac{1}{g_{m2}}}{\left(R_2 + \frac{1}{g_{m2}} \right)} = \frac{R_2}{g_{m2}}$$

$$R_{TH} = \frac{R_2}{R_2g_{m2} + 1}$$
(d) \[\frac{v_{out}}{v_{in}} = A_1 \cdot A_2 \]

\[\frac{v_{out}}{v_{in}} = \frac{-40000}{201} \approx -200 \]

Small-signal output resistance = \(R_{TH} \) from part (c).

\[R_{TH} = \frac{R_2}{R_2 g_m + 1} \]

small-signal output resistance = \(\frac{5}{201} \) k\(\Omega \) \approx 25\(\Omega \)