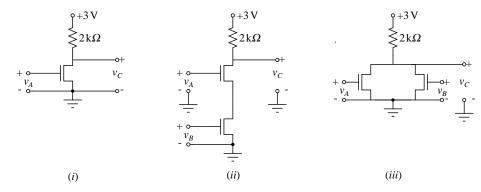
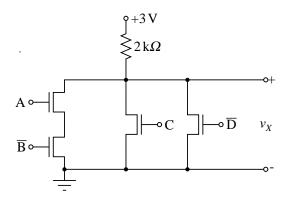
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

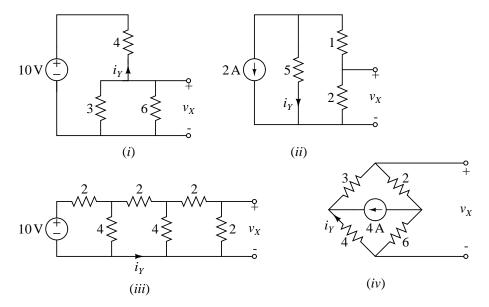

6.002 – Circuits and Electronics Spring 2003

Handout S03-007 - Homework #1

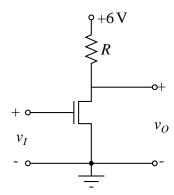
Issued: Wed. Feb 5 Due: Fri. Feb 14


In Problems 1.1 and 1.2 use the convention that a logical one corresponds to a high voltage level and a logical zero corresponds to a low voltage level. Assume that the high voltage level is much greater than the threshold voltage. When the voltage v_A associated with the Boolean variable Ais high (3 volts), A = 1; when v_A is low (≈ 0 volts), A = 0. The same relationship holds with v_C and C.

Problem 1.1:


- 1) For each circuit above, generate a truth table which shows how the output depends on the input(s).
- 2) Assume that the "on" resistance of the MOSFETs is 100 Ω . What is the value of the output voltage v_C for C = 0 and for C = 1?

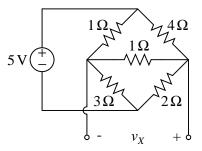
Problem 1.2:



- 1) Generate a truth table which shows the dependence of x on A, B, C, and D.
- 2) Assume that the "on" resistance of the MOSFETs is 100 Ω . What is the <u>range</u> of possible values for the 0 state of the output voltage v_X ?
- 3) What is the maximum power requirement of this circuit?

Problem 1.3: What is the value of the voltage v_X and the current i_Y in each of the following circuits? All resistance values are in Ω .

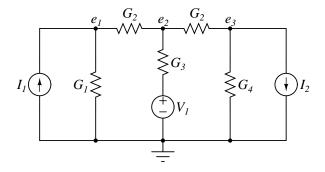
Problem 1.4: Consider the inverter below:



Assume that the FET has an "on" resistance of 200Ω and a threshold voltage of 2.5 ± 0.1 V. The ± 0.1 deviation accounts for device-to-device variations. The static discipline for the chip in which this FET will be used is

INPUT
$$\begin{cases} v_{IH} = 4V \\ v_{IL} = 2V \end{cases} \quad \text{OUTPUT} \begin{cases} v_{OH} = 5V \\ v_{OL} = 0.5V \end{cases}$$

- 1) If R is too small, the inverter will not satisfy the static discipline. What is the minimum permissable value of R?
- 2) What are the noise margins for each logical state of the input?
- 3) What is the width of the forbidden region?
- 4) What part(s) of the staic discipline would you change to make the 0 and 1 noise margins equal? How does this change the forbidden region?


Problem 1.5: Determine the voltage v_X in the circuit below. **Hint:** Define a reference node and write a pair of node equations.

Problem 1.6: For the circuit below, write a set of three KCL equations sufficient to solve for the node to reference voltages e_1, e_2 , and e_3 . Express your equations in the form:

$$[\cdots]e_1 - [\cdots]e_2 - [\cdots]e_3 = \text{source terms} \\ -[\cdots]e_1 + [\cdots]e_2 - [\cdots]e_3 = \text{source terms} \\ -[\cdots]e_1 - [\cdots]e_2 + [\cdots]e_3 = \text{source terms} \end{cases}$$

where the brackets contain sums of conductances. **Do** <u>not</u> solve these equations!

