Problem 4.1: The nonlinear element in the circuit below has the i-v characteristics shown in the graph.

(A) Estimate values of the voltage v across and the current i through the element.

(B) Assume the nonlinear device is connected upside down as shown below. What are the values of v and i in this case?
Problem 4.2: The circuit below contains a single nonlinear element whose i-v characteristic is indicated.

\[i = \begin{cases}
 kv^3 & \text{if } v > 0 \\
 0 & \text{if } v < 0
\end{cases} \]

\[k = \frac{1 \text{ mA}}{(\text{volt})^3} \]

(A) Determine the voltage v and the current i.

(B) Determine the voltage v_S across the current source.

Hint: Think about Thevenin and/or Norton equivalent circuits.