Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Circuits and Electronics Spring 2003

Handout S03-025 - Quiz#1

Wednesday March 5, 2003

Name: _____

Recitation Instructor (circle one):									
	Baldo	Hutchinson	Kolodziejski		Schindall	Wilson			
Recitation Hour (circle one):									
	9	10	11	12	1	2			

ALL PROBLEMS CARRY THE SAME WEIGHT

Problem	Points	Score	Grader
1	25		
2	25		
3	25		
4	25		
Total	100		

Name:____

PROBLEM 1

Assume the convention that a high voltage level denotes a Boolean 1, and a low voltage level denotes a Boolean 0.

(A) What is the logical function of this circuit? Express your answer as a boolean function or as a truth table.

(B) What <u>minimum</u> value of 1-state voltage at the inputs will ensure proper operation of the circuit?

(C) What is the value of the 0-state output voltage?

Name:

PROBLEM 2

Use the node-to-reference voltages indicated on the circuit below to write a set of independent node equations (KCL statements) sufficient to solve for the unknown voltages. **Do not solve them**.

Please put your equations in a form in which all conductances are collected in factors. That is:

[conductances] $\cdot e_1 \pm$ [conductances] $\cdot e_2 \pm \cdots$ ETC.

Name:

PROBLEM 3

Devise Thevenin And Norton equivalent circuits at terminals a, b for the circuit below. Be sure to specify units and polarities.


```
Name:
```

PROBLEM 4

The box in the circuit below contains linear elements (resistances) and independent sources.

With a 100 Ω resistor connected at the terminals, the voltage is v = 6 Volts.

One other measurement suffices to determine the Thevenin equivalent circuit of the box.

(A) Decide what circuit element, if any, you would connect, and describe the <u>one</u> measurement you would make.

(B) Assume a numerical value for that measurement and draw the corresponding Thevenin equivalent circuit with element values attached. Specify units and polarities.