Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.002 - Circuits and Electronics

Spring 2003
Handout S03-025- Quiz \# 1
Wednesday March 5, 2003

Name: $\qquad$

Recitation Instructor (circle one):
Baldo Hutchinson
Kolodziejski
Schindall
Wilson

Recitation Hour (circle one):
$9 \quad 10$
11
12
1

## ALL PROBLEMS CARRY THE SAME WEIGHT

| Problem | Points | Score | Grader |
| :---: | :---: | :---: | :---: |
| 1 | 25 |  |  |
| 2 | 25 |  |  |
| 3 | 25 |  |  |
| 4 | 25 |  |  |
| Total | 100 |  |  |

## Name:

$\qquad$

## PROBLEM 1

Assume the convention that a high voltage level denotes a Boolean 1, and a low voltage level denotes a Boolean 0 .


MOSFET MODEL

(A) What is the logical function of this circuit? Express your answer as a boolean function or as a truth table.

## Name:

(B) What minimum value of 1 -state voltage at the inputs will ensure proper operation of the circuit?
(C) What is the value of the 0 -state output voltage?

Name: $\qquad$

## PROBLEM 2

Use the node-to-reference voltages indicated on the circuit below to write a set of independent node equations (KCL statements) sufficient to solve for the unknown voltages. Do not solve them.


Please put your equations in a form in which all conductances are collected in factors. That is:

$$
[\text { conductances }] \cdot e_{1} \pm[\text { conductances }] \cdot e_{2} \pm \cdots \quad \text { ETC. }
$$

Name: $\qquad$

## PROBLEM 3

Devise Thevenin And Norton equivalent circuits at terminals $a, b$ for the circuit below. Be sure to specify units and polarities.


Name: $\qquad$

## PROBLEM 4

The box in the circuit below contains linear elements (resistances) and independent sources.


With a $100 \Omega$ resistor connected at the terminals, the voltage is $v=6$ Volts.
One other measurement suffices to determine the Thevenin equivalent circuit of the box.
(A) Decide what circuit element, if any, you would connect, and describe the one measurement you would make.
(B) Assume a numerical value for that measurement and draw the corresponding Thevenin equivalent circuit with element values attached. Specify units and polarities.

