## Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Circuits and Electronics Spring 2003

Handout S03-037 - Homework #7

Issued: Wed. Mar 19 Due: Fri. Apr 4

**Problem 7.1:** The circuits below are driven by either step functions or impulse functions. In each case determine the initial  $(t = 0^+)$  and final (asymptotic) values of the designated voltages and/or currents. Label your answers clearly.



**Problem 7.2:** Pick any three of the five circuits shown in Problem 7.1. For each of your choices, sketch and dimension the indicated voltages and currents for t > 0. Evaluate time constants in terms of circuit elements. Label your drawings clearly, including the designation (A), (B)  $\cdots$  (E) of your choices.

Endeavor to do this problem without formally solving the differential equations.

**Problem 7.3:** The gray box shown below contains only linear circuit elements and satisfies the strict definition of linearity.



When the box is initially without stored energy and is driven by a unit voltage inpulse at the terminals aa' as shown, the response of the voltage  $v_O$  for t > 0 is



(A) Determine the response  $v_O(t)$  when the input  $v_I$  at aa' is a step of amplitude V.

$$v_I = V u_{-1}(t)$$

(B) The input to the box is shown below.



Determine the output voltage  $v_O(t)$  for t > 0.

Note that a response to a delayed input can be written as

$$v(t) = u_{-1}(t - T)f(t - T)$$

where f(t) is the response to an excitation at t = 0 and T is the time the input is delayed. The multiplier  $u_{-1}(t-T)$  ensures that there is no reponse for t < T.

**Hint:** Resolve the input into the sum of three inputs, each of which is a scaled singularity function.

**Problem 7.4:** The LC circuit below is driven by an impulse:



- (A) Determin  $v(0^+)$  and  $i(0^+)$ .
- (B) At  $t = 0^+$ : What is the sign of the first derivative of v? What is the sign of the first derivative of i?
- (C) Note that for t > 0 the circuit is:



Write a differential equation for v(t) or i(t) and solve it. Express both v(t) and i(t) as functions of time.