Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Circuits and Electronics
Spring 2003

Handout S03-037 - Homework \#7

Issued: Wed. Mar 19

Due: Fri. Apr 4

Problem 7.1: The circuits below are driven by either step functions or impulse functions. In each case determine the initial $\left(t=0^{+}\right)$and final (asymptotic) values of the designated voltages and/or currents. Label your answers clearly.
(A)

(B)

(C)

(D)

(E)

Problem 7.2: \quad Pick any three of the five circuits shown in Problem 7.1. For each of your choices, sketch and dimension the indicated voltages and currents for $t>0$. Evaluate time constants in terms of circuit elements. Label your drawings clearly, including the designation (A), (B) … (E) of your choices.

Endeavor to do this problem without formally solving the differential equations.
Problem 7.3: The gray box shown below contains only linear circuit elements and satisfies the strict definition of linearity.

When the box is initially without stored energy and is driven by a unit voltage inpulse at the terminals $a a^{\prime}$ as shown, the response of the voltage v_{O} for $t>0$ is

(A) Determine the response $v_{O}(t)$ when the input v_{I} at $a a^{\prime}$ is a step of amplitude V.

$$
v_{I}=V u_{-1}(t)
$$

(B) The input to the box is shown below.

Determine the output voltage $v_{O}(t)$ for $t>0$.
Note that a response to a delayed input can be written as

$$
v(t)=u_{-1}(t-T) f(t-T)
$$

where $f(t)$ is the response to an excitation at $t=0$ and T is the time the input is delayed. The multiplier $u_{-1}(t-T)$ ensures that there is no reponse for $t<T$.

Hint: Resolve the input into the sum of three inputs, each of which is a scaled singularity function.

Problem 7.4: The LC circuit below is driven by an impulse:

(A) Determin $v\left(0^{+}\right)$and $i\left(0^{+}\right)$.
(B) At $t=0^{+}$: What is the sign of the first derivative of v ?

What is the sign of the first derivative of i ?
(C) Note that for $t>0$ the circuit is:

Write a differential equation for $v(t)$ or $i(t)$ and solve it. Express both $v(t)$ and $i(t)$ as functions of time.

