Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

 6.002 - Circuits and Electronics

 6.002 - Circuits and Electronics

 Spring 2003

 Spring 2003}

Handout S03-042 - Homework \#8

Issued: Wed. Apr 2
Due: Fri. Apr 11

Problem 8.1: \quad The inductor in the LC circuit below has an initial current $i=I$ Amperes. At $t=0$ the switch opens.

(A) Determine the natural frequency and the period of the oscillation which occurs for $t>0$. Specify units!
(B) Write a differential equation for the current i or the voltage v which applies for $t>0$.
(C) Solve this equation, apply the indicated initial conditions, and write expressions for $i(t)$ and $v(t)$ for $t>0$.

Problem 8.2: The circuit of Problem 8.1 is modified by adding a high-value parallel resistor of conductance G. The initial inductor current is $i=I$ and the switch opens at $t=0$.

(A) Write a differential equation for v which applies for $t>0$.
(B) Determine the characteristic equation for the circuit, the roots of which are the natural frequencies.
(C) Determine the damping factor α, the natural frequency ω, and the Q of the lightly damped oscillator.

Problem 8.3: The circuits shown below are driven by sinusoids. In each case express the indicated variables as functions of time, i.e. $f(t)=A \cos (\omega t+\phi)$ and write expressions for the magnitudes and the phases.

Hint: Use a complex exponential as the driving function.
(A)

(B)

Problem 8.4: The circuits show below, which are driven by sinusoids, have the indicated responses.
I)

$$
v_{L}(t)=I \frac{\omega L}{\sqrt{1+\left(\frac{\omega L}{R}\right)^{2}}} \cos \left(\omega t+\frac{\pi}{2}-\tan ^{-1}\left(\frac{\omega L}{R}\right)\right)
$$

$$
\begin{aligned}
& v_{C}(t)=V \frac{1}{\sqrt{1+(\omega R C)^{2}}} \cos \left(\omega t-\tan ^{-1}(\omega R C)\right) \\
& i(t)=V \frac{\omega C}{\sqrt{1+(\omega R C)^{2}}} \cos \left(\omega t+\frac{\pi}{2}-\tan ^{-1}(\omega R C)\right)
\end{aligned}
$$

(A) Focus first on circuit I). Recall that the magnitude of the impedance of an inductor varies as ωL, and note that the circuit has the form of a current divider.

At the limit of very low frequencies $\left(\omega \ll \frac{R}{L}\right)$ reason from the circuit alone to determine an approximate value for the magnitude of v_{L}. Verify your answer by using the given response.
(B) At the limit of very high frequencies $\left(\omega \gg \frac{R}{L}\right)$ use circuit reasoning to determine an approximate value for the magnitude of v_{L}.
(C) At what frequency does the current $i_{S}(t)$ divide equally in magnitude between R and L ?
(D) At this frequency, what are the magnitude and phase of the response?

The following questions are similar to A) - D) above but apply to circuit II). Note that it has the form of a voltage divider and recall that the magnitude of the impedance of a capacitor varies as $\frac{1}{\omega C}$.
(E) For the repeat of Part A), what is the condition for the low frequency limit that corresponds to $\left(\omega \ll \frac{R}{L}\right)$? Reason from the circuit alone to determine approximate values for the magnitudes of v_{C} and i at very low frequencies. Verify your answers by using the given responses.
(F) For the repeat of Part B), what is the condition for the high frequency limit that corresponds to $\left(\omega \gg \frac{R}{L}\right)$? Reason from the circuit along to determine approximate values for the magnitudes of v_{C} and i at very high frequencies. Verify your results by using the given responses.
(G) At what frequency does the voltage $v_{S}(t)$ divide equally in magnitude between R and C ?
(H) At this frequency what are the magnitudes and phases of the responses?

