Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.002 - Circuits and Electronics

Spring 2003
Handout S03-048- Quiz \# 2
Thursday April 9, 2003

Name: \qquad

Recitation Instructor (circle one):
Baldo Hutchinson
Kolodziejski
Schindall
Wilson

Recitation Hour (circle one):
$9 \quad 10$
11
12
1

ALL PROBLEMS CARRY THE SAME WEIGHT

Problem	Points	Score	Grader
1	25		
2	25		
3	25		
4	25		
Total	100		

Name:

\qquad

PROBLEM 1

The circuit below contains a nonlinear element whose iv characteristics are shown.

(A) Determine the voltage v_{O} graphically - show your construction.
(B) Can this circuit be described by a Thevenin equivalent circuit at the terminals? Explain!

Name:

\qquad

PROBLEM 2

This circuit uses a control valve V which has the small-signal model shown.

Assume that the static component of v_{I} establishes a suitable operating point at which the smallsignal model applies.
(A) Sketch and label a small-signal model of the circuit which can be used to calculate the smallsignal voltage gain $A_{v}=\frac{v_{o}}{v_{i}}$ where v_{o} and v_{i} are the small-signal components of v_{O} and v_{I}.

Name: \qquad
(B) Express $v_{a c}$ in terms of v_{i} and v_{o}.

For Extra Credit: (one-third the value of a problem)
(C) Derive an expression for $A_{v}=\frac{v_{o}}{v_{i}}$, the incremental voltage gain.

Name:

\qquad

PROBLEM 3

For each of the circuits below, determine the initial and final (asymptotic) values of the indicated variables.

For $t<0, v=0$ v is in Volts

VARIABLE	$t=0^{+}$	$t \rightarrow \infty$	UNITS
v			
i_{1}			
i_{2}			

VARIABLE	$t=0^{+}$	$t \rightarrow \infty$
i		
v_{1}		
v_{2}		

Name:

\qquad

PROBLEM 4

The capacitor in the circuit below is initially charged to the voltage $v=-5$ Volts. At $t=0$ the switch closes.

$$
\begin{aligned}
& v=-5 \mathrm{~V} \text { for } t<0 \\
& R=10 \mathrm{k} \Omega=10^{4} \Omega \\
& C=1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}
\end{aligned}
$$

(A) Without detailed analysis of the circuit, sketch $v(t)$ and $i(t)$ for $t>0$. Label initial values and asymptotes.
(B) Determine the time constant with which the circuit responds.
(C) Express either $v(t)$ or $i(t)$ as a function of time. If you can do this without first developing an analytical solution, fine.

Name:
This page intentionally left blank for work on Problem 4

