Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 – Circuits and Electronics Spring 2003

Handout S03-048 - Quiz # 2

Thursday April 9, 2003

Name: _____

Recitation Instructor (circle one):									
	Baldo	Hutchinson	Kolodziejski		Schindall	Wilson			
Recitation Hour (circle one):									
	9	10	11	12	1	2			

ALL PROBLEMS CARRY THE SAME WEIGHT

Problem	Points	Score	Grader
1	25		
2	25		
3	25		
4	25		
Total	100		

PROBLEM 1

The circuit below contains a nonlinear element whose iv characteristics are shown.

(A) Determine the voltage v_O graphically - show your construction.

(B) Can this circuit be described by a Thevenin equivalent circuit at the terminals? Explain!

PROBLEM 2

This circuit uses a control valve V which has the small-signal model shown.

Assume that the static component of v_I establishes a suitable operating point at which the smallsignal model applies.

(A) Sketch and label a small-signal model of the circuit which can be used to calculate the small-signal voltage gain $A_v = \frac{v_o}{v_i}$ where v_o and v_i are the small-signal components of v_O and v_I .

(B) Express v_{ac} in terms of v_i and v_o .

For Extra Credit: (one-third the value of a problem)

(C) Derive an expression for $A_v = \frac{v_o}{v_i}$, the incremental voltage gain.

PROBLEM 3

For each of the circuits below, determine the initial and final (asymptotic) values of the indicated variables.

PROBLEM 4

The capacitor in the circuit below is initially charged to the voltage v = -5 Volts. At t = 0 the switch closes.

- (A) Without detailed analysis of the circuit, sketch v(t) and i(t) for t > 0. Label initial values and asymptotes.
- (B) Determine the time constant with which the circuit responds.

(C) Express either v(t) or i(t) as a function of time. If you can do this without first developing an analytical solution, fine.

Name:_____

This page intentionally left blank for work on Problem 4