Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science

 6.002 - Circuits and Electronics

 6.002 - Circuits and Electronics

 Spring 2003

 Spring 2003}

Handout S03-052 - Homework \#10

Issued: Wed. Apr 16

Due: Fri. May 2

Please note that HW\#10 is a two week assignment focusing on operational amplifiers. It will receive double weight in the assignment of homework grades.

Problem 10.1: Most circuits which employ operational amplifiers rely on negative (error-correcting) feedback. This problem explores several of the consequences of such feedback in an abstract form. Understanding a simple abstract example illustrating some of the consequences of feedback may make the operational amplifier easier to understand.

The element A is an amplifying element which has very high gain. However, the gain varies greatly from unit to unit and is strongly temperature dependent.

The element \mathbf{B} is a variable attenuator. Its output y^{\prime} equals βy where $\beta<1$.
$(\Sigma$ is a summing element. Its output δ is the difference between the input x and the fed-back variable y^{\prime}, that is, $\delta=x-y^{\prime}$.

The summing element compares the input with a fraction β of the output. Thus, in the ideal situation, the output would be an amplified replica of the input and the "error variable" would be vanishingly small.
(A) Assume A is a constant - a large positive number. Show that:

$$
T=\frac{y}{x}=\frac{\mathrm{A}}{1+\mathrm{A} \beta} \quad \begin{aligned}
& \text { This is the transfer } \\
& \underline{\text { ratio }} \text { of the system }
\end{aligned}
$$

Note that if $\mathrm{A} \beta \gg 1$

$$
T=\frac{\mathrm{A}}{1+\mathrm{A} \beta} \approx \frac{1}{\beta}
$$

The effect of negative feedback is to yield a closed loop amplification which is determined by the variable attenuator alone and is only weakly dependent on the gain of the unreliable amplifier A.
(B) Assume that β is precisely known, but that A may vary over a range of $10: 1$ because of manufacturing variations, temperature, etc.

$$
10^{5}<\mathrm{A}<10^{6} \quad \beta=10^{-2}
$$

Evaluate T at the extremes of A and determine ΔT, the overall variation in T. What is the corresponding fractional change $\frac{\Delta T}{T}$?

A better way of determining the sensitivity of T to changes in A is to:
Evaluate $\frac{d T}{d \mathrm{~A}}$ and form $\frac{d T}{T}=f(\mathrm{~A}) \frac{d \mathrm{~A}}{\mathrm{~A}}$
Show that $f(\mathrm{~A})=\frac{1}{1+\mathrm{A} \beta}$
What is $\frac{d T}{T}$ for the midrange of the numbers above?
The effect of negative feedback is to reduce the consequences of variations in A by a factor of $\frac{1}{1+\mathrm{A} \beta} \approx \frac{1}{\mathrm{~A} \beta}$. $\mathrm{A} \beta$ is the gain around the closed loop or the closed loop amplification.
(C) Assume that A is a noisy amplifier. That is

$$
y=\mathrm{A} \delta+N(t)
$$

where A is the nominal gain and $N(t)$ is an undesired noise signal.
Determine the noise signal seen at the system output and show that the noise at the output is approximately $\frac{N(t)}{\mathrm{A} \beta}$ where $\mathrm{A} \beta$ is the loop gain.
Hint: Think superposition.
For the numbers in Part B), what is the peak-to-peak value of the noise at the output if $N(t)=5 \mathrm{~V}$ peak-to-peak?
(D) Assume that the amplifying element has frequency limitations. That is to say, represent it as a low-pass filter:

$$
\overline{\mathrm{A}}(s)=\frac{\mathrm{A}_{0} s_{1}}{s+s_{1}}
$$

where A_{0} and s_{1} (the bandwidth) are constants.
For low frequencies $\left(s=j \omega \ll s_{1}\right) \overline{\mathrm{A}}(j \omega) \approx \mathrm{A}_{0}$, but for frequencies above $s_{1}, \overline{\mathrm{~A}}(j \omega)$ decreases as $\frac{1}{\omega} . s_{1}$ is the bandwidth of $\overline{\mathrm{A}}(j \omega)$.

Show that the bandwidth of the closed loop transfer function $T(s)$ is approximately $\mathrm{A}_{0} \beta s_{1}$.

In the operational amplifier, the variables are voltages, the summing function and the gain function are intrinsic and the variable attenuator is provided in the external circuit.

Problem 10.2: Determine the output voltages v_{O} of the following circuits. Assume that the operational amplifiers are ideal. That is, the gain $\mathrm{A} \rightarrow \infty$. All voltages are defined with respect to ground.
(A)

(B)

(C)

Problem 10.3:

The FET is described by the square-law model:

$$
\begin{gathered}
i_{D}= \begin{cases}\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2} & v_{G S}>V_{T} \\
0 & v_{G S}<V_{T}\end{cases} \\
K=1 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}} \quad V_{T}=1 \mathrm{~V}
\end{gathered}
$$

How does v_{O} depend on v_{I} ? Derive $v_{O}=v_{O}\left(v_{I}\right)$.

Problem 10.4: In each of the circuits below, the input is a sinusoid at frequency $\omega \sec ^{-1}$. The voltage variables are complex amplitudes. Assume that the op-amps are ideal and that they operate in the linear region. For each circuit, derive the voltage transfer ratio

$$
\overline{\mathrm{A}}(s)=\frac{\overline{\bar{V}}_{O}}{\bar{V}_{I}}
$$

(A)

For what range of ω can this circuit be regarded as an integrator?
(B)

Sketch the Bode plot for $\frac{\bar{V}_{O}}{\bar{V}_{I}}$. Assume R is large enough so the the damping factor α is small.

Problem 10.5: In the circuit below, the op-amps are ideal and the FET operates in the saturation region and fits the square law model:

$$
i_{D}=\frac{K}{2}\left(v_{G S}-V_{T}\right)^{2} \quad\left\{\begin{aligned}
K & =0.1 \mathrm{~mA} / \mathrm{V}^{2} \\
V_{T} & =0 \mathrm{~V}
\end{aligned}\right.
$$

Find an expression for v_{2} in terms of v_{1}.

Problem 10.6: The semiconductor diode in the op-amp circuits below has the usual $i-v$ characteristic:

(A)

What is the sign of v_{O} ?
Derive an expression for v_{O} as a function of v_{I}.
(B)

What is the sign of v_{O} ?
Derive an expression for v_{O} as a function of v_{I}.
(C) Let x be a voltage variable which is positive and y be a voltage variable which is negative.

Design a circuit using no more than six op-amps which will produce at its output a voltage proportional to the product $(x)(|y|)$.

