OPERATIONAL AMPLIFIER STABILITY

INVERTING CONNECTION:

\[\frac{v_o - v_i}{R_1} = \frac{v_i - v_o}{R_2} \quad \text{(Current Mirror)} \]

\[v_o = \frac{R_2}{R_1 + R_2} v_i + \frac{R_1}{R_1 + R_2} v_o \quad \text{(Superposition)} \]

Either equation together with \(v_o = A(v_i - v_i) \) and \(v_i = 0 \) yields

\[\frac{v_o}{v_i} = -\frac{R_2}{R_1} \quad \text{if} \quad R_1 > R_2 \]

Any disturbance is suppressed

What happens if the inputs are interchanged?

IDENTICAL CONFIGURATION EXCEPT \(v_i \) AND \(v_o \) ARE INTERCHANGED

SAME ANALYSIS YIELDS:

\[\frac{v_o}{v_i} = \frac{A}{1 + \frac{R_1}{R_1 + R_2}} = -\frac{R_2}{R_1} \quad \text{if} \quad R_1 > R_2 \]

Any disturbance is amplified

THE EQUILIBRIUM OF THE SECOND CIRCUIT, WITH POSITIVE FEEDBACK, IS UNSTABLE AND CANNOT BE SUSTAINED IN THE REAL WORLD.

CONSIDER: INVERTED PENDULUM

ROLLER COASTER

ELECTRIC BLANKET
INTRODUCE INTERNAL DYNAMICS:

\[A = \frac{S_a}{0.5 + 5a} \]

\(s = j\omega \)

AND ASSUME THE VOLTAGE VARIANCES HAS COMPLEX AMPLITUDES.

SUBSTITUTE \(A(s) \) FOR \(A \) IN EXPRESSIONS PREVIOUSLY DEVELOPED

NEGATIVE FEEDBACK:

\[\frac{V_o}{V_c} = -A_0 \left(\frac{S_a}{R_2 + (R_1 + 2R_0)S_a + S_a} \right) = -A_0 \left(\frac{S_a}{R_2 + (R_1 + 2R_0)S_a + S_a} \right) \]

\[\frac{V_o}{V_c} = A_0 \left(\frac{S_a}{S + S_a + S_a + S_a} \right) \]

NOTE THAT TIME CONSTANT OF RESPONSE OF THE AMPLIFIER IS NOW NOT \(\frac{1}{S_a} \) BUT \(\frac{S_a}{S + S_a + S_a + S_a} \)

WHICH IS SMALLER BY A FACTOR OF \(\frac{1}{A_0(R_1 + R_2)} \)

THE BANDWIDTH OF THE AMPLIFIER IS LARGER BY THE SAME FACTOR

POSITIVE FEEDBACK: ANALYSIS IS IDENTICAL

\[\frac{V_o}{V_c} = A_0 \left(\frac{S_a}{S + S_a + S_a} \right) \]

ROOT IS NOW IN THE RIGHT HALF PLANE

THE CHARACTERISTIC EQUATION IS \(S = S_a + A_0 \frac{R_2}{R_1 + R_2} \)

OR \(S + S_a \frac{R_2}{R_1 + R_2} \)

THE TRANSIENT RESPONSE IS \(e^{S_a} \)

WHICH IS A GROWING EXPONENTIAL INSTABLE!
An op-amp can be used as a comparator by exploiting the limits (+V_s, the supply voltages) on the output voltage.

\[V_+ = 0 \text{,} \quad V_0 = \begin{cases} V_s & \text{if } V_+ < V_{\text{ref}}, \quad V_0 = -V_s \\ V_s & \text{if } V_+ > V_{\text{ref}}, \quad V_0 = +V_s \end{cases} \]

Slew rate is very high (~20 V/\mu s).

Consider the effect of positive feedback around the comparator:

\[V_+ = \frac{R_2}{R_1 + R_2} + \frac{R_1}{R_1 + R_2} V_0 \text{ (superposition)} \]

\[\begin{cases} V_+ > V_{\text{ref}}, \quad V_0 = V_s \\ V_+ < V_{\text{ref}}, \quad V_0 = -V_s \end{cases} \]

Two stable states.

Assume circuit is in state \(V_0 = -V_s \). What is the constraint on \(V_+ \) to stay there?

\[V_+ < V_{\text{ref}} \text{ or: } \left(V_s \frac{R_2}{R_1 + R_2} - V_s \frac{R_1}{R_1 + R_2} \right) < V_{\text{ref}} \text{, equivalently: } V_+ < V_{\text{ref}} \frac{R_2}{R_1 + R_2} + V_s \frac{R_1}{R_2} \]

Assume circuit is in the state \(V_0 = +V_s \). The corresponding condition to stay there is:

\[V_+ > V_{\text{ref}} \text{ or: } V_+ > V_{\text{ref}} \frac{R_1 + R_2}{R_2} - V_s \frac{R_1}{R_2} \]
In summary:

IN +Vs state: \[V_i > V_{ref} \left(\frac{R_1 + R_2}{R_2} \right) - \frac{V_s}{R_2} \]

IN -Vs state: \[V_i < V_{ref} \left(\frac{R_1 + R_2}{R_2} \right) + \frac{V_s}{R_2} \]

Graphically:

![Graph](image)

Hysteresis by injection

This circuit, with bistability produced by positive feedback, can easily be made into a signal generator or oscillator.

Initially the switch is closed.

*Assume circuit is IN + state i.e. \(V_0 = +V_s \) (with switch closed circuit looks like Schmitt trigger with \(V_{ref} = 0 \)).

Let switch open at \(t = 0 \) \(V_C \) increases toward \(+V_s \).

When it reaches \(\frac{V_s}{2} \), \(V_C > V_+ \) and state changes to \(V_0 = -V_s \).

\(V_C \) now decreases toward \(-V_s \), with the state changing again when it reaches \(-\frac{V_s}{2} \) making \(V_C < V_+ \).

And the cycle continues.
To determine the period focus on interval marked \(T/2 \) and let \(t' = 0 \) at start of this interval.

By inspection:

\[
V_c(t') = -V_s + \frac{3}{2} V_s e^{-t'/T}
\]

This interval ends when

\[
V_c(t') = -V_s/2 \quad \text{or when}
\]

\[
e^{-t'/T} = \frac{1}{3}
\]

At this time

\[
t' = T/2
\]

\[
T = 2\pi \ln 3
\]

The clock in Lab #4 is different in detail, but relies on positive feedback around an amplifier, a fast inverter, which saturates at both ends of the transfer characteristic.

The analysis proceeds as in the circuit above.