Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.002: Circuits & Electronics
Problem Set #7 Solution

Exercise 7.1: Each network shown below has a non-zero initial state at ¢ = 0, as indicated.
Find the network states for ¢ > (0. Hint: what equivalent resistance is in parallel with each capacitor
or inductor, and what decay time results from this combination?
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Answer: Each circuit above is a simple first-order system with no forcing term (or input).

The expression for the state variable (either v(t) or i(£)) is then of the form
Ae b

Because, for each of the 4 circuits given, the capacitor voltage or inductor current at ¢ = oo is 0.
We also know that the the decay time, 7, is C'Rgy for the capacitor circuits, and L/ Req for inductor
circuits. Using these facts, it is easy to find the network states for ¢ > 0.
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Exercise 7.2: First, in order to determine V, we need to realize that after a long time, the capacitor
becomes a open circuit, meaning no current can flow through the 1kQ resistor. It then follows that after
a long time, v¢(t) =V — v, =V, so the final value that the given graph settles to is the V we are looking
for. Hence, V = 8V. When the switch is closed, v.(t) cannot change instantaneously since no impulses
are applied; therefore Vini; = v¢(0) = 2V.

Now we look at the time constant t = RC of this circuit. Referring to Equation 10.27 on page 680 of the
textbook, we recognize that the initial slope of the measured graph will intersect the value of v¢(w) =
8V at t = 1. Interpolating this slope (see the attached graph), we obtain t = 2mS. Therefore, C = 2pF.

Exercise 7.3: Since the network inductor carries no current prior to t = 0 and no impulses are
applied to the system, we must have i (0") = i_(0") = OA. Let’s first examine the circuit at t = co. At this
point in time, the inductor is simply a short circuit and we have in() = 4mA. Therefore, we can
immediately calculate R; = 4V/4mA = 1kQ. Next, let’s examine the circuit at t = 0. At this point in time,
the inductor is simply a open circuit and we have in(0) = 1mA. Again, we can write 1ImA =
4V/(1kQ+1kO+R,) and solve for R,. This results in R, = 2kQ.

Now that we have all the resistor values, we can look into this circuit from the inductor port (i.e.
between R; and R;) and calculate the equivalent Re, with vy turned off. We see that Req = Ry //
(Ry+1kQ) = 1kQ // 3kQ2 = 750Q.
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From the equation of i;y(t), we observe that T = L/R.q = 1usec in this case. Therefore, L = 750pH.

Problem 7.1: This problem examines the relation between transient responses of linear
systems. The network shown below is first driven by a current step at ¢ = 0, then driven by a
current ramp at ¢ = 0, and finally driven by the current step plus the current ramp at ¢ = 0. In
the first two cases, the inductor has zero initial current, as indicated.

(A) Find the inductor current i(f) in response to the current step shown below. Assume that
i(0) = 0.

(B) Find the inductor current i(t) in response to the current ramp shown below. Again assume
that #(0) = 0.

(C) The step input can be constructed from the ramp input according to Isep(t) = %%!Ramp(t].
Show that their respective responses are related in a similar manner.

(D) Would the result from Part C hold if i{(0) # 07 Why or why not?

(E) Finally, find the inductor current i(¢) in response to the current step plus the current ramp, that
is to 1(t) = I.(1 + at) for t > 0. This time assume that i(0) = i,. Hint: think superposition.
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Answer: The differential equation for the circuit can be written as
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(A) Solving the differential equation above for a particular solution and the homogeneous one given
the step input we obtain

il’(ﬂ = I,
_ t
il-l(ﬂ -1, ¢ W/

Therefore, the current response to the step is given by

i) =1I. (1 - e'ﬁ) ur(t)

(B) Guess the particular solution to the differential equation, given the ramp input, to be
ip(t)=At+ B

Substitution of this solution into the differential equation then yields

L
ﬁfl + At + B = el it
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Since this equation must hold for all time,

A = al,
L
B = —E(ﬂo

Solving for the homogeneous solution to matech the initial condition leads to

L __t
i(t) = EUJQ e (L/R)

Therefore, the current response to the ramp is given by

i(t) = {afot - %ai’o (1 . e_(ffj'_ﬁ?):| ur(t)

From the solution to Part (B)
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The result does not hold if ¢{(0) # 0. When we differentiate the input, we only differenti-
ate the external source, since the initial condition is an internal source. However, when we
differentiate the output, we differentiate both the homogeneous and the particular solutions.
Mathematically, the term corresponding to initial condition of Igamp(t) gets multiplied by the
time constant when differentiated to yield Igiep(t).

Guess the particular solution to the differential equation, given the ramp plus the step input,
to be
ip(t) = At + B

Then the differential equation reduces to
L
—R.fl—i—z'lt—}— B=1I+alt
Thus,
A = al,

L
B = I (1 —Ea)

L
ip(t) I, (1 + ot — Ea)

Note that this particular solution is just the sum of the two particular solutions to each separate
input. The same answer could have been found using superposition of the answers from Parts
(A) and (B), since the input is the superposition of the corresponding step and ramp inputs.

The homogeneous solution does not change for a change in input, so it is still of the form
ig(t) = Ae_“ﬂi“‘]
where A is a scaling factor used to satisfy the initial condition.

So, for t > 0, we have
L e —
i(t) = I, (1 + at - ﬁa) + Ae TR



Given that #(0) = i, we can write

Which we can solve for A to find

B L
A=i, -1, (1—5(1)

The final expression for i(t) for t > 0 is then

. L . L _t
Ht) = I, (1 + at - E(r) + (10 -1, (1 - Eu)) g /R

Note that the resulting homogeneous solution, like the particular solution, is just the sum of

the two homogeneous solutions for the two separate inputs, plus the decaying initial condition.
We could have used superposition and just summed the two answers from Parts (A) and (B),
and added in the decaying i, term.

Problem 7.2: The circuit shown below can be used to regulate the current through an inductor.
Typical applications include the regulation of currents in motors, solenoids and loud speakers, all
of which have inductive windings. We will analyze the circuit assuming that it operates in a cyclic
manner with switching period T. During the first part of each period, which lasts for a duration
DT, switches S1 and S4 are on while switches S2 and 53 are off. During the second part of each
switching period, which lasts for a duration (1 — D)T', switches S1 and 54 are off while switches S2
and S3 are on. Note that 0 < D < 1.

(A) Assume that D is constant and that the circuit has been operating long enough to reach a
cyclic steady state by ¢ = 0, at which point a new switching period begins. In terms of the
unknown #(0), determine i(t) for 0 < ¢ < T.

(B) Use your result from Part (A), and the fact that the circuit operates in a cyclic steady state
to determine i(0). Note that with this result, and that from Part (A), i(¢) is completely
determined.

(C) Find the average value of i(t) over the period 0 < ¢ < T'. Hint: is it necessary to average the
result from Part A, or is there a faster method to find the average?

(D) Suppose that the circuit has been operating with D = D, for a time long enough to reach a
cyclic steady state by + = 0. Suppose that D switches to D = Dy at t = (), just as a new
switching period begins. In this case, determine ¢(t) for £ > 0. Hint: can you use your result
from Parts (A) and (B) as a particular solution over the interval 0 < ¢7
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Answer:

(A) Over the period 0 < ¢ < DT, Vg is applied to the resistor and inductor. Over the period
DT <t <(1—- D)T, —Vg is applied to the resistor and inductor.

We know that starting at ¢ = 0, the current through the inductor will decay exponentially
from its initial value i(0) towards %— with a time constant T = % This gives

A &
i(t,0 <t < DT) = % + (i(D} = %) et



Notice that when ¢ = 0, this expression evaluates to i(0), and as t = oc, i(f) —

Yy
T

For the second part of the switching cycle, when DT < ¢ < T, the current decays exponentially
from its value i(DT) towards —%‘ Substituting in for {(DT') from the equation above gives

i(t, DT <t <T)

—% + (% + i(DT}) e -PT)E
% +2¥8-u-pnf | (@(0) -~ E‘*) e~lt

For the purposes of this solution, let us define i, (t; D) to be
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Where n is some positive integer that indexes each switching cycle. The n is needed because
the piece-wise solution above must apply to all switching cycles for ¢ > 0, not just the first

one.

(B) If the circuit is operating in a cyclic steady state, then i(T") must be equal to i(0). Setting the
expression found in Part (A) equal to i(0) and solving for yields
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We can check to see if this answer makes sense by evaluating it at D =1, D =0, and D = .5,

assuming T < % When D = 1, we expect i(t), and hence i(0), to be

o Likewise, when

D =0, we expect i(0) = —KRQ At D = .5 with a fast switching cycle (the period, T, is much
shorter than the time constant ,—%}1 we should expect i(0) = 0. All of these predictions are

satisfied by the equation above.

For the purposes of this solution, let us define i,(D) to be

io(D)
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(C) To find the average value of i(t) over the period 0 < ¢t < T is is not necessary to go through
the trouble of averaging the result from Part (A). Consider, for a moment, the average voltage

applied across the inductor. We know that wy(t) = L4

Averaging this over the period

T requires taking the integral of both sides with respect to ¢, and dividing the result by
T. However, the integral on the right evaluates to L(i(T") — i(0)), which we know to be 0,
because i(T) = i(0) by definition. The average voltage across an inductor whose terminal
current is in cyclic steady state is 0. This means that the average voltage applied to the
resistor /inductor pair must appear entirely across the resistor. The average voltage applied is

Ve DT —Va(1-D)T _
- = Vg(

(1)

7

2D — 1). The average value of i(¢) is then

_ Vs(2D - 1)
R

We expect this to be 0 for D =5, % for D =1, and —% for D = 0, which are all true.



(D) The particular solution for this input, D, is just the answer from Part (A) evaluated at
D = Dy, which is ipL(t; D2). The homogeneous solution is just an exponential decay times
some constant, used to satisfy the initial conditions. In this case, the initial condition is
i(0) = io(D). Because i,(0; Do) = i.(Ds), the homogeneous solutions is just

in(t) = (io(D1) — io(D2)) e~ R/"
The full solution is the sum of the particular and homogeneous solutions:

i(t) = i (& D2) + (io(D1) — io(D2)) e~ tF/%

Problem 7.3: Consider the digital logic circuit from Problem 3.1. Model each MOSFET with
the switch-resistor model, and let the on-state resistance Roy satisfy Rony < Rpy. Further assume
that MOSFET M4 has a gate-to-source capacitance Cgg. Given that the inputs IN1, IN2 and IN3
cycle through the combinations 000, 001, 010, 011, 100, 101, 110, 111, determine the average power
dissipated by the logic circuit. Assume that each input combination is held for the period T with
T » RpyCgs. Make appropriate simplifications based on the inequalities for Ron and T.

ouT
[ M4
wi—|| mi
M3 |3
w2 —] ;Mz
Answer: Because Ron <€ Rpy, we can approximate Rpy + nRon = Rpy, where n is small

( < 2 for this problem). Also, we can say that the capacitor Cigg will fully charge or discharge in
each switching period T, because T > RpyCgs.

First, let’s consider the static power dissipated by the pullup resistors Rpy. When the gate of M4

is pulled high, the output is low, and only the Rpy on the right is dissipating power. When the

gate of M4 is low, only the Rpy on the left is dissipating power. The circuit must be in one of these
2

two states all the time, so it is constantly dissipating %“;Watts.

Now, let us consider the dynamic power dissipated. Dynamic power comes from the fact that
the Gate-Source capacitance, Cag of M4 must be charged and discharged every time the output
changes state. If we look at the sequence of inputs in the truth table below, we see that the output
changes state 6 times, which means the capacitor charges and discharges 3 times.

IN1 IN2 IN3 | OUT
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Every time M4's Cgs is charged, %C{;SVSE Joules flow into the capacitor through Rpy on the left.



At the same time, an equal amount of energy is lost in Rpy. Every time it is discharged, the
energy previously stored in Cgg is dissipated in the Rons of M1, M2, and/or M3. The total energy
dissipated, then, is %CGS VZ#[number of changes] Joules. There are six logic transitions in our case.
The power is just the energy dissipated per unit time, which is, for this circuit and combination of
inputs Z=CasVs Joules.

The total power dissipation is the sum of the dynamic and static dissipations, which is

1 36'(;5)
Rt’u 8T
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Problem 7.4:

(A) By defining vy consistent with the direction of ip drawn in the figure and writing a KVL
equation around the loop. we obtain

vog—vr = 0
o dz@'c
C di?
Note carefully the sign change in the second term; this is due to the fact that if = —% hecause

when ¢y is positive, charge is being drawn out of the capacitor. We now proceed to guess that
gc(t) = Acos{wt+ ¢) where A, w, and ¢ are knowns yet to be determined. Plugging this guess into
the KVL equation, we obtain

A
Fcos(wf + o) — _4w2Lcos(wf + @) 0
1

VIC

JIL = 1)C = w=
Since we know that T = %’T = 97/ LC. we obtain T = 0.199msec.

(B) We can compute part (B) and part (C) without solving the complete differential equation. This
is because there are no resistors in the circuit, so the total energy is conserved. We know that at
t =0, we have

H"rfof = H"rC' + I"r’r[,
1, 1.
= 56.--1% + aLa%
= 50pJ +20pJ = T0pJ

At the maximum value of ve, we must have all the energy on the capacitor. Therefore

[—
[ 2Wie

Ve mar = VI C =~ 11.83V

(C) Similarly, at the maximum value of {7, we must have all the energy on the inductor. Therefore

) [2W,,
iLmar = V % ~ 374mA



(D) For part (D) and part (E), we will unfortunately have to solve for A and ¢ in go(t). We use
the two initial conditions to write the following equations at t = 0:

go(0) = Acos(¢) = Cvg(0) = 10

d
i0) = -=¢

o |i=o= Awsin(¢) = 200mA

Now that we have two equations and two unknowns (w has already been determined in part A},
we solve and obtain A = 11.832p and ¢ = 0.564rad.

We observe that because if is positive at t = 0, vo will reach its first maximum positive value at
wi + ¢ = 27 since we require ¢ > 0. Plugging in numbers gives us t = 180.86usec.

(E) Because ip, is positive at t = 0, i will reach its first maximum positive value at wt + ¢ = Z.
Plugging in numbers gives us t = 31.84pusec.

We can check the answer from part D and part E by recognizing that the two combined gives us %
of a full eycle. Therefore, T = %(lSO.SGpsec — 31.84pusec) = 199usee which matches exactly with
our answer in part A.



