Problem 1

Problem 2

Problem 3

Total Grade
Problem 1 – 35%

A hypothetical “leaky” MOSFET (L-MOSFET) is modeled with the additional gate-to-source resistance R_{GS} as shown below. Also shown below is an inverter constructed using the L-MOSFET. Assume that the inverter drives N identical inverters from its output, as indicated. Given this load, the inverter is required to obey the standard static discipline defined by $0 < V_{OL} < V_{IL} < V_{IH} < V_{OH} < V_S$.

(1A) The static ($C_{GS} = 0$) input-output characteristic of the inverter is as shown below. Determine the voltages V_A, V_B and V_C that define this characteristic. Express the voltages in terms of V_S, R_{PU}, N and the L-MOSFET parameters.

V_A:

V_B:

V_C:

(1B) In terms of the static discipline parameters (V_{OL}, V_{IL}, V_{IH} and V_{OH}), determine the voltage range within which the threshold voltage V_T must be designed for the inverter to obey the static ($C_{GS} = 0$) discipline at its input.

$$\leq V_T \leq$$
Determine the resistance range within which the pull-up resistance R_{PU} must be designed for the inverter to obey the standard static ($C_{GS} = 0$) discipline at its output. Express the range in terms of V_S, N, the L-MOSFET parameters and the static discipline parameters.

$$\leq R_{PU} \leq$$
(1D) Assume that $v_{IN}(t) > V_T$ for $t < 0$ so that the L-MOSFET switch is initially closed. For $t \geq 0$, v_{IN} steps to $v_{IN}(t) < V_T$ so that the L-MOSFET switch opens. For this input, determine the dynamic ($C_{GS} > 0$) response of the inverter. That is, determine $v_{OUT}(t)$ for $t \geq 0$. Express v_{OUT} in terms of V_S, R_{PU}, N, the L-MOSFET parameters. You may also use V_A, V_B and V_C from Part 1A in your answer.

$v_{OUT}(t \geq 0)$:
Problem 2 – 30%

This problem concerns the analysis of the MOSFET amplifier shown below. For the purposes of this analysis, assume that the MOSFET operates in its saturation region. The corresponding MOSFET characteristics are also given below.

Saturation Region:
\[v_{DS} \geq v_{GS} - V_T \geq 0 \]
\[i_D = 0.5K (v_{GS} - V_T)^2 \]

(2A) Determine \(v_{OUT} \) as a function of \(v_{IN} \). Express \(v_{OUT} \) in terms of the circuit parameters and the MOSFET parameters.

\[v_{OUT} : \]
Let \(v_{IN} = V_{IN} + v_{in} \) where \(V_{IN} \) and \(v_{in} \) are the large-signal and small-signal components of \(v_{IN} \), respectively. Further, let \(v_{OUT} = V_{OUT} + v_{out} \) where \(V_{OUT} \) and \(v_{out} \) are the large-signal and small-signal components of \(v_{OUT} \), respectively. Assume that the amplifier is biased with a value of \(V_{IN} \) that results in saturated operation of the MOSFET. For this case, draw the circuit that models the small-signal behavior of the amplifier, and that can be used to determine \(v_{out} \) from \(v_{in} \). Clearly label the components in the model.
(2C) Determine the small-signal gain v_{out}/v_{in} of the amplifier. Express the gain in terms of the amplifier parameters, the MOSFET parameters and the bias voltage V_{IN}.

v_{out}/v_{in}:
Problem 3 – 35%

A signal generator having Thevenin resistance R_{SG} is connected to Port #1 of a two-port network as shown below. At $t = 0$, the Thevenin voltage $v_{SG}(t)$ of the signal generator takes a step from zero to V_{SG}, and the voltage $v_2(t)$ is measured at Port #2 as shown below with the port open-circuited. Note that α is a unitless constant satisfying $0 < \alpha < 1$, and τ is a time constant. Assume that the Thevenin voltage of the signal generator is zero for a very long time prior to the step.

$$v_{SG}(t)$$

$$\begin{array}{c}
\text{Signal Generator} \\
R_{SG} \\
\hline
v_{SG}(t) \\
\end{array}$$

$$\begin{array}{c}
\text{Network} \\
\text{Port #1} \\
\hline
\text{Port #2} \\
\end{array}$$

$$\begin{array}{c}
v_2(t) \\
\hline
\alpha V_{SG}(1 - e^{-t/\tau}) \\
\end{array}$$

(3A) Which of the following could be the two-port network?

(A) \hspace{0.5cm} (B) \hspace{0.5cm} (C) \hspace{0.5cm} (D) \hspace{0.5cm} (E)

Network (Circle One): A B C D E
(3B) Which of the following could be the two-port network?

(A) \[R \ L \ #1 \ #2 \]
(B) \[L \ R \ #1 \ #2 \]
(C) \[R \ L \ #1 \ #2 \]
(D) \[L \ R \ #1 \ #2 \]
(E) \[R \ L \ #1 \ #2 \]

Network (Circle One): A B C D E

(3C) Determine the values of \(R \) and \(L \) in the network you chose in Part 3B. Express the values in terms of \(V_{SG} \), \(R_{SG} \), \(\alpha \) and \(\tau \).

\[R: \]
\[L: \]
(3D) The Thevenin voltage $v_{SG}(t)$ of the signal generator now produces the pulse having amplitude V_{SG} and duration T shown below. Determine the voltage $v_2(t)$ measured at Port #2 for $t \geq 0$ with the port open-circuited. Express $v_2(t)$ in terms of V_{SG}, R_{SG}, T, τ and α. Assume that the Thevenin voltage of the signal generator is zero for a very long time prior to the pulse.

$v_2(t \geq 0)$: